
Honeywell

SERIES 60 (LEVEL 66)/6000

SOFTWARE

PL/I USER’S GUIDE

Honeywell PL/I USER’S GUIDE

SERIES 60 (LEVEL 66)/6000

SUBJECT:

User’s Guide for PL/I in a GCOS Environment

SOFTWARE SUPPORTED:

Software Release PL 1.0

DATE:

November 1975

ORDER NUMBER:

DEOU, Rev. 0

PREFACE

This manual describes the use of PL/I in a GCOS environment for Series 60
(Level 66)/6000 systems. The manual includes information on the execution of a
PL/I program, file generation and access, compiler processing, loader functions,
required control cards, and internal representation of PL/I data. Also,
examples are included which are complete and executable. These examples contain
the control cards and data necessary for execution; in addition sample output
listings produced from the execution of some of these programs are also given.

c) 1976zHoneywel1 Information Systemslnc. File No.: IP33, 1733

DE04

CONTENTS

Page

Section I Introduction .. 1~1
Description of the Manual.. 1“1

Scope of the Manual.. 1“1
Structure of the Manual.. 1-1
Related Manuals... 1-3

GCOS Functions... 1”3
Compilation of a PL/I Program.................................. 1-U
Loading and Execution of PL/I Programs . . . 1-4

Section II Execution of a PL/I Program... 2-1
Deck Setup... 2-1
Control Cards ... 2-1

SNUMB Control Card.. 2-1
IDENT Control Card.. 2-2
OPTION Control Card.. 2-2
PL1 Control Card.. 2-2
EXECUTE Control Card... 2-2
LIMITS Control Card.. 2-2
ENDJOB Control Card.. 2-3

Section III System Input/Output Files.. 3-1
System Input/Output File Use... 3-1

System Input/Output File Codes 3-1
Sys tern Input.. 3-2
Deck Setup Including Program Data........................ 3-2

Example of the Use of System Input/Output Files 3-2

Section IV Compiler.. 4-1
Compiler Phases .. 4-1

Compiler Control Phase (COMMON)............................. 4-3
Syntax Analysis Phase (PARSE).................................. 4-3
Semantic Analysis Phase (SEMANT) 4-3
Optimization Phase (OPTIMIZER) 4-3
Code Generation Phase (CODE GENERATION). . . 4-4
Error Message Editing Phase (DIAGNOSTIC) • • 4-4

Files Used During Compilation...................................... 4-4
Al ter File.. 4-6
Object Program File.. 4-6
Object Deck File.. 4-6
Stranger Option File... 4-6
Compressed Deck File... 4-6
System Output File.. 4-7
Source Program File.. . 4-7
Work File... 4-7
I ncl ude File... 4-7

Options... 4-7
Standard Options .. 4-8

Standard Option Names ... 4-10
ALTNO Option.. 4-10
CHECK Option.. 4-10
COMDK Option.. 4-10
CSYM Option.. 4-10
DECK Option.. 4-10

DE04

CONTENTS (cont)

Page

LIST Option.. 4-10
LST I N Opt i on.. 4-11
LSTOU Option.. 4-11
MAP Option.. 4-11
OPTZ Option.. 4-11
PARSE Option.. 4-11
SEVERITY Option... 4-11
SNUMBER Option ... 4-12
STAB Option.. 4-12
SYMT Option... 4-12
XREF Option.. 4-12

Standard Option Control Cards 4-13
Special Options... 4-13

Special Option Names.. 4-14
FLOATBIN Option... 4-14
IBMFORM Option ... 4-15
LONGFORM Option... 4-15
SEC_SYMDEF Option.. 4-15
SHORT_CALL Option.. 4-15
SMESSAGE Option... 4-15
STATUS Option.. 4-16

Special Option Control Cards............................. 4-16
Example of the Use of Options.................................. 4-17

Compiler Output Listing ... 4-17
Al ter Li st i ng.. 4-18
Compiler Option Listing.. 4-19
Expanded Source Program Listing............................. 4-19
Symbol Table and Cross Reference Table . . . 4-20
Storage Space and External Symbol Listing. . 4-21
Object Program Map.. 4-22
Object Program Listing .. 4-23
Error Message Listing... 4-24
Compiling Statistics Listing 4-24
Storage Capacity Required at Compile Time. . 4-25

Section V Loader... 5-1
Description of Loader Functions 5-1

Loader Processing.. 5-1
Input Deck Processing... 5-2

Loader Control Cards.. 5-5
DKEND Control Card.. 5-6
ENTRY Control Card.. 5-6
EXECUTE Control Card... 5-6
FFILE Control Card......................'................................ 5-7
LIBRARY Control Card... 5-7
LINK Control Card... 5-7
OBJECT Control Card... 5-8
OPTION Control Card... 5-8
SOURCE Control Card... 5-9
USE Control Card.. 5-10

Overlay Structure ... 5-10
Segment Definition .. 5-10
Root Segment.. 5-11
Segment Overlays .. 5-11
Example of an Overlay Setup....................................... 5-11
Tree Representation.. 5-13
References Between Segments....................................... 5-14
Loading Segments .. 5-15

Example Using PLINK .. 5-16
Example Using PLLINK.. 5-16

Example Of The Use of Overlays....................................... 5-16
Deck Setup for Example OVLY....................................... 5-17

iv DE04

CONTENTS (cont)

Page

Tree Representation for OVLY.................................. 5-19
Loader Processing of OVLY... 5-19

Section VI External Files ... 6-1
File Organization... 6-1
Access Mode...................................... 6-1
Transmi ss i on... 6-2

Stream-Oriented Transmission 6-2
Record-Oriented Transmission 6-3

RECORD Structure.. 6-3
FIXED Records.. 6-4
VARIABLE Records .. 6-4

Attachment of PL/I Files to External Files. . . 6-4
Device Assignment Control Cards............................. 6-6

FILE Control Card... 6-6
PRMFL Control Card... 6-7
TAPE Control Cards... 6-7

SYSOUT Control Card... 6-8
READ Control Card.. 6-8
PRINT Control Card... 6-9
PUNCH Control Card... 6-9

Device Requirements.. 6-9

Section VII CONSECUTIVE and INTERACTIVE Organization 7-1
CONSECUTIVE Organization... 7-1

Attachment of a CONSECUTIVE File........................ 7-1
$ FFILE Control Card.. 7-2
Descriptor File for a CONSECUTIVE File. . 7-3
Example of CONSECUTIVE File Attachment. . 7-4

Stream-Oriented Transmission 7-4
Examples of Stream File Access........................ 7-4

Record-Oriented Transmission 7-7
Data Transmission Statements............................. 7-7
Examples of Record File Access........................ 7-7

INTERACTIVE Organization... 7-9
Attachment of an INTERACTIVE File........................ 7-9
Example of INTERACTIVE File....................................... 7-10

Section VIII INDEXED Organization ... 8-1
INDEXED File Access.. 8-1

File Creat ion.. . 8-1
File Access... 8-1

Sequential Access of an INDEXED File. . . 8-2
Direct Access of an INDEXED File.................... 8-2

Data Transmission Statements for INDEXED
Files.. 8-2

Structure of an INDEXED File... 8-4
Pages... 8-4
Relationship Between the Data File and

the I ndex File... 8-4
Structure of the Data File....................................... 8-4
Structure of the Index File....................................... 8-7

Attachment of an INDEXED File....................................... 8-9
Descriptor File for an INDEXED File.................... 8-9

Control Cards for INDEXED Files 8-9
Page Size... 8-10
Percent Fill.. 8-10
Record and Key Parameters............................. 8-11

Memory Reservation .. 8-11
Page Buffers... 8-11

Calculation of File Size... 8-12
Calculation of Data File Size........................ 8-12

v DE04

CONTENTS (cont)

Page

Calculation of Index File Size........................ 8-13
Example of INDEXED File Attachment 8-14

Descriptor File Calculations............................. 8-14
Memory Reservation Calculation........................ 8-15
File Size Calculation... 8-15

Utilization Report... 8-16
Examples of INDEXED File Access 8-18

Section IX REGIONAL Organization... 9-1
REGIONAL Fi le Access... 9-1

File Creat ion.. 9-1
File Access... 9-2

SEQUENTIAL Access ... 9-2
Direct Access .. 9-2

Data Transmission Statements for REGIONAL
Files.. 9-2

Structure of a REGIONAL File... 9-4
Attachment of a REGIONAL File...................................... 9-6

Descriptor File for a REGIONAL File................... 9-6
Memory Reservation ... 9-6
Calculation of File Size.. 9-7
Example of REGIONAL File Attachment.................... 9-7

Utilization Report.. 9-8
Examples of REGIONAL File Access... 9-8

Section X Linking PL/I and Other Languages 10-1
Data... 10-1

f Equivalent Data Representations............................. 10-1
I nterface.. 10-2

Argument List.. 10-3
Argument Descriptor.. 10-4

Type.. 10-4
Dimensions in an Array... 10-5
Size.. 10-5

Example... 10-6
OPTIONS Attribute ... 10-8

Section XI Internal Representation of PL/I Data............................. 11-1
Variables.. 11-1

Al i gnment... 11-1
Representation ... 11-2
Positioning in Memory... 11-2
Supplementary Storage... 11-3
Filler Storage... 11-3
Packed Property... 11-4

Storage Layout Rules for PL/I Member Variables. 11-4
Storage Layout for Member Scalars.................................. 11-4
Storage Layout for Member Structures 11-7
Storage Layout for Member Arrays 11-10

Section XII Include Files.. 12-1
SRCLIB Program... 12-1
Use of the SRCLIB Program.. 12-1

Files Used by the SRCLIB Program................................ 12-1
SRCLIB Control Cards.. 12-2

ALTER Control Card... 12-3
COPY Control Card.. 12-3
CREATE Control Card.. 12-4
DELETE Control Card... 12-4
INITIAL Control Card... 12-4
LIST Control Card.. 12-5
MODIFY Control Card... 12-5

vi DE04

CONTENTS (cont)

Page

SAVE Control Card.. 12-5
Examples... 12-6

Example 1 - Creation of an INCLUDE File. . . 12-6
Example 2 - Modification of an INCLUDE File. 12-7
Example 3 - Saving the INCLUDE File................... 12-7
Example 4 - Use of a Saved INCLUDE File. . . 12-8

Section XIII Debugging PL/I Programs.. 13-1
Memory Layout ... 13-1
Abnormal Termination. .. 13-2

Abort Codes... 13-2
ON-Units.. 13-3
Error Trace-Back.. 13-3
Locating PL/I Variables in Memory........................ 13-4

EXTERNAL STATIC Variables 13-5
EXTERNAL PROCEDURES .. 13-5
INTERNAL STATIC Variables 13-6
LABELS.. 13-6
INTERNAL PROCEDURES .. 13-7
AUTOMATIC Variables .. 13-7
EXTERNAL PROCEDURE Arguments............................. 13-10
INTERNAL PROCEDURE Arguments............................. 13-11

Detailed Stack Frame Format....................................... 13-11
Example... 13-13

Gross Memory Layout for the Example.................... 13-27
Error Trace-Back for the Example........................ 13-27
Locating an AUTOMATIC Variable 13-28
Current Stack Frames for the Example 13-29
Locating an Argument List... 13-30

Section XIV Efficiency Considerations... 14-1
General Rules for Improving Efficiency.................... 14-1

Data Types... 14-1
Data Conversions.. 14-2
Varying Strings... 14-2
Debugging Constructs ... 14-2

Rules for Improving Time Efficiency........................ 14-2
Alignment of Structures.. 14-3
Blocks and ON-Units.. 14-3
String Assignment... 14-4
Fixed-Point Multiplication and Division. . . 14-4
Fixed-Point Addition and Subtraction 14-5
Scale-Factor Conversion.. 14-5
Address Calculation.. 14-6
Logical Expressions.................................. 14-7
Tests... 14-7
Invariant Computations .. 14-8
Structure Layout ... 14-8
Variable Extents ... 14-9
Static Global Variables.. 14-10
Global and Parameter Variable References . . 14-10
Constant Arguments .. 14-11
Initialization ... 14-11
Labels.. 14-11
Concatenation.. 14-11
Stream Input-Output.. 14-11
Temporary Work Files... 14-11
ED IT-Directed Input-Output....................................... 14-12
Stream Data List... 14-12
Buffers... 14-12

vi i DE04

CONTENTS (cont)

Section XV

Rules for Improving Storage Efficiency
Ali gnment
Static Var i ab1es...
File Organization..
External Variables
Data-Directed Input-Output
Input-Output Interfacing
Work Regions for Files

Common Programming Errors
Program Cons truets...

Special Characters
Reserved Character Combination
Confusion Between Break and Minus
Confusion Between Assignment and Comparison
Operators

Picture Characters
Decimal Point in a Pictured Character
String..

Restrictions on Identifiers
Conflict Between Built-In Function and
Procedure Names

Program Structure
Unmatched Comment Delimiters
Quotes
Matching ELSE Clauses
Multiple Closure of Blocks

Program Control
OPT IONS(MA IN) Attribute
Transfer of Control
Changing the Index within a DO-Group
LABEL and ENTRY Variables

Ini ti alization
Initialization of Variables
Allocation of Variables
Evaluation of Increments and Limits for
DO-Groups

External Names
Extent Expressions for BASED Variables . . .
Replication Factors in INITIAL Attributes. .

Eva 1uat i on
Multiple Assignments
Eva 1uation Order
SUBSTR Built-In Function Arguments
SUBSTR Function and Varying Strings

Convers ion
Fixed-Point Division
Loss of Precision in Conversion
Fixed-Point Arithmetic to Character

Convers ion
Procedure Calls

By-Value Arguments . . .
Parenthesized Arguments
Function References without Arguments. . . .
Multiple Entry Points
Parameter Extents

Input-Output
Input-Output Lists
Control Format I terns
Control Options
Inpu t Str i ngs
Mixed Transmission

Page

14-12
14-12
14-14
14-14
14-14
14-14
14-15
14- 15

15- 1
15-1
15-2
15-2
15-2

15-2
15-3

15-3
15-4

15-4
15-4
15-5
15-5
15-6
15-6
15-7
15-7
15-7
15-8
15-9
15-9
15-10
15-10

15-11
15-11
15-12
15-12
15-13
15-13
15-14
15-14
15-15
15-15
15-15
15-16

15-16
15-17
15-17
15-18
15-18
15-19
15-19
15-19
15-20
15-20
15-20
15-20
15-21

DE04

CONTENTS (cont)

Page

Page and Line Size.. 15-21
BCD Devices... 15-21
Control Cards for INDEXED and REGIONAL
Files.. 15-21

Section XVI Solution of a Problem in PL/1 16-1
Definition of the Problem.. 16-1
First Solution... 16-2

Deck Setup... 16-3
Ou tpu t L i s t i ng... 16-4
Discussion... 16-16

Second Solution .. 16-16
Deck Setup... 16-16
Output Listing ... 16-18
Discussion.. . 16-19

Appendix A Series 60 (Level 66)/6000 PL/I .. A-l

Appendix B Comparison of Series 60 (Level 66)/6000 PL/I and
Standard PL/I... B-l

Appendix C Memory Requirements... C-l

Appendix D Character Conversion Tables.. D-l

Appendix E Internal Representation of PL/I Data Types E-l

Appendix F External Names .. F“1

Appendix G Structure of the INCLUDE File... G-l

Appendix H GCOS PL/I Compiler Error Messages... H-l

Appendix I ON-Codes... I“1

ILLUSTRATIONS

Figure 3-1 Use of Standard Files.. 3-3
Figure 4-1 Logical Flow of the PL/I Compiler........................... 4-2
Figure 4-2 Files Used During Compilation..................................... 4-5
Figure 5-1 Input Deck Processing.. 5-3
Figure 5-2 Loader Processing of Overlays.................................... 5-20
Figure 6-1 File Attachment.. 6-5
Figure 7-1 CONSECUTIVE Stream File Creation .. 7-5
Figure 7-2 CONSECUTIVE Stream File Access ... 7-6
Figure 7-3 CONSECUTIVE RECORD File Creation .. 7-8
Figure 7-4 CONSECUTIVE RECORD File Access ... 7-9
Figure 7-5 Attachment of INTERACTIVE Files............................... 7-10
Figure 8-1 Structure of the Data File.. 8-6
Figure 8-2 Structure of the Index File.. 8-8
Figure 8-3 INDEXED File Creation... . 8-19
Figure 8-4 Utilization Report for INDEXED File Creation . . . 8-20
Figure 8-5 INDEXED File Access..................... o <>. 0 .<»...<» • 8-21
Figure 8-6 Utilization Report for INDEXED File Access 8-22
Figure 9-1 Structure of a REGIONAL File..................................... 9-5
Figure 9-2 REGIONAL File Creation .. 9-10
Figure 9-3 Utilization Report for REGIONAL File Creation. . . 9-10
Figure 9-4 REGIONAL File Access... 9-11
Figure 9-5 Utilization Report for REGIONAL File Access. . . . 9-12
Figure 13-1 Detailed Stack Frame Diagram .. 13-12

i x DE04

ILLUSTRATIONS (cont)

Page

Figure 13-2 Deck Setup for Example... 13-14
Figure 13-3 Compiler Output Listing for Example................................... 13-16
Figure 13-4 Loader Map for Example... 13-22
Figure 13-5 Execution Report for Example ... 13-24
Figure 16-1 Deck Setup for First Solution... 16-3
Figure 16-2 Complete Output Listing for First Solution 16-5
Figure 16-3 Deck Setup for Second Solution.. 16-17
Figure 16-4 Output of Second Solution.. 16-18

TABLES

Table 4-1 Files Used in a PL/I Compilation.. 4-4
Table 4-2 Standard Options.. 4-9
Table 4-3 Special Options... 4-14
Table 4-4 Sections of the Compiler Output Listing......................... 4-18
Table 5-1 Loader Control Cards... 5-5
Table 5-2 Loader Options... 5-9
Table 6-1 Record-Oriented Access Methods ... 6-2
Table 6-2 Device Requirements... 6-9
Table 7-1 Data Transmission Statements for CONSECUTIVE

RECORD Files.. 7-7
Table 8-1 Data Transmission Statements for INDEXED Files . . 8-3
Table 9-1 Data Transmission Statements for REGIONAL Files. . 9-3
Table 11-1 Boundary and Length for Scalar Variables. 11-5
Table 12-1 SRCLIB Control Cards... 12-2
Table 13-1 PL/I Abort Codes... 13-2
Table 13-2 Frequently-Used Block Common I terns.......... 13-13
Table D-l Character Conversion Table (IBMEL to ASCII). . . . D-2
Table D-2 Character Conversion Table (GBCD to ASCII) D-4
Table D-3 Character Conversion Table (ASCII to GBCD to

IBMEL)... D-6
Table F-l Reserved External Names... F-2
Table G-l Structure of the INCLUDE File.......................... G-2
Table G-2 Structure of a Catalog Block.......................... G-3

x DE04

SECTION I

INTRODUCTION

This manual describes the ways in which the general facilities of the
General Comprehensive Operating Supervisor (GCOS) are applied to the specific
tasks of compiling, loading, and executing PL/I programs.

DESCRIPTION OF THE MANUAL

The scope and structure of the User’s Guide are described in the
paragraphs and then a list of related manuals is given.

following

Scope of the Manual

This User’s Guide is a self-contained and complete introduction to the use
of PL/I for the Series 60 (Level 66)/6000 (hereafter referred to as Series 60).
Therefore, it contains some basic information about GCOS to aid the programmer
using this system for the first time. The necessary control cards, for example,
are described and illustrated. Whenever a basic Series 60 concept is discussed,
a reference is given to the manual that contains the detailed description.
However, the information given in this manual about these concepts is sufficient
for thei r initial use.

Many examples are included in this manual. These examples are complete and
executable; they contain all the control cards and data necessary for their
execution. Also included are sample output listings produced from the execution
of some of these programs.

Structure of the Manual

The sections of the User’s Guide are ordered to
information about the use of the Series 60, then the
and finally guidelines and examples.

provide, first the basic
details on the use of PL/I,

After the introductory material, the control cards required to compile and
execute a PL/I program are given and the use of the standard input and output
files is described. The sections that cover this material are:

II Execution of a PL/I Program
III System Input/Output Files

1-1 DE04

Next, detailed descriptions are given for the two large system programs involved
in compilation and execution, namely: the compiler and the loader. The
characteristics of the compiler are described and the compiler output listing is
explained and illustrated. The relevant loader control cards are given and the
overlay capability is described. The sections are:

I V Compi1 er
V Loader

Next, the use of external files is described. For each
the method of attachment and an example of file access are
are:

type of organization,
given. The sections

V I Externa 1 Files
VII CONSECUTIVE and INTERACTIVE Organization
VIII INDEXED Organization
IX REGIONAL Organization

Next, some details of the compiler program are given. The method.of linking
PL/I programs with programs written in other languages is described. The
internal representation of PL/I data is described and storage layout rules for
variables given. The sections are:

X
XI

Linking PL/I and Other Languages
Internal Representation of PL/I Data

Next, examples of the creation, modification, and use of the INCLUDE file are
given. The section is:

XI I INCLUDE Files

Next, a detailed description of debugging PL/I programs is presented. The
messages printed upon the abnormal termination of a job are discussed and the
methods for locating different types of PL/I variables in a memory dump are
described and illustrated. The section is:

XIII Debugging PL/I Programs

Next, a series of hints on the effective use of PL/I are given. Methods for
optimizing PL/I programs are suggested and some common programming errors
illustrated. The sections are:

XIV Efficiency Considerations
XV Common Programming Errors

Finally, a sample problem is programmed in PL/I in two ways. The first program
illustrates how a programmer can use PL/I to solve a problem quickly for his own
use. The second program illustrates the use of PL/I for the development of a
routine for a production environment. The section is:

XVI Solution of a Problem in PL/I

1-2 DE04

The appendixesgive reference are:

A

H

Restrictions in Series 60 PL/1
Comparison of Series 60 PL/I and Standard
Memory Limits
Character Conversion Tables
Internal Representation of PL/I Data Tyes
External Names
Format of the INCLUDE File
Error Messages
ON Codes

these sections, appendixes are included in the User’s Guide
material in tabular form

Related Manuals

Additional information on the PL/I language and the Series 60 is available.
The PL/I language is described in another Honeywell publication, as follows:

The PL/I Reference Manual (Order Number DE05) describes the Series 60
PL/I language. Each feature of the language is explained by an
example, and the rules of the language are given in definitions that
are informal but complete.

The aspects of the Series 60 environment discussed in this manual are described
in other Honeywell publications, as follows:

The General Comprehensive Operating Supervisor (GCOS) manual (Order
Number DD19) describes the functions of GCOS.

The Control Cards Reference Manual (Order Number DD31) describes the
control cards used in the execution of the activities of a job.

The General Loader manual (Order Number DD10) describes the
genera 1 - purpose loader used to initiate an execution activity.

The File and Record Control manual (Order Number DD07) describes file
process i ng.

The Indexed Sequential Processor manual (Order Number DD38) describes
the processor used for creating, accessing, and maintaining files with
indexed sequential organization.

GCOS FUNCTIONS

The General Comprehensive Operating Supervisor (GCOS) consists of a set of
control programs and processing programs that monitor the current status of all
system resources and jobs in the system and allocate optimum resources to each
job.

GCOS performs the following functions:

Input media conversion
Resource allocation
Execution
Termi nation
Output media conversion

1-3 DE04

Each of these functions is considered in the following paragraphs.

Input media conversion handles input data in two categories: system related
data and program data. The system related data consists of control cards that
define peripheral devices, processors, and storage requirements for the
activities belonging to a job. The program data consists of the information to
be processed by the program.

Resource al location is based on the information obtained from the control
cards. If the resources required for a job activity are not currently available
in the system, the job activity is suspended.

Execution of the activity under the supervision of a dispatcher begins when
all the necessary resources are secured. The dispatcher queues activities with
an attached priority and processes activities from the queue in the order of
the i r priorities.

Term i nat i on follows the completion of a job activity. Errors and
accounting information about the job activity are written on the SYSOUT file,
the file is closed, and all resources allocated to the job activity are
released.

Output med i a convers i on takes place when all the activities that constitute
a job are processed sequentially through allocation, execution, and termination.

Compilation of PL/I Programs

The compilation of a PL/I program requires the execution of a large system
program, namely the PL/I compiler. GCOS loads the PL/I compiler from a
catalogued master file, allocates the necessary resources for the compiler, and
passes control to the compiler. The compiler then accepts a PL/I source program
and translates it to an object program if no uncorrectab 1e errors are found.

Note that PL/I source programs must be prepared using either the BCD or
ASCII character set. Section XV discusses special character considerations and
Appendix D lists the graphic and punch-card representations of these character
sets.

The PL/I compiler can be used to perform a simple syntactic check of a
source program, to compile a source program, or to compile and optimize a source
program. The amount of processing done by the compiler is specified by the use
of options. The structure of the compiler and the compiler-directing options
are described later, in the section on the ’’Compiler”.

The compiler operates in batch processing mode. The size of the source
program determines the amount of memory that is required. Approximately 80K is
needed for the compilation of a small PL/I program and 100K for an average
program.

Loading and Execution of PL/I Programs

The execution of a PL/I program requires the loading of that program and
the necessary subroutine group. The object program, the called subroutines, and
the run-time packages are linked and the object program is executed.

1-4 DE04

SECTION I I

EXECUTION OF A PL/I PROGRAM

This section describes the control cards that are used to compile and
execute a PL/I program. These control cards define the compilation parameters,
loading and execution operations, peripheral device assignments and core storage
requ i rements.

DECK SETUP

An example of a basic control card setup that compiles and executes a PL/I
external procedure follows. In this example, the source program is on cards.

1_______ 8._________ 16 ______________________

$ SNUMB 12345
$ IDENT ZETA,X2233,ST0P2
$ OPTION PL1
$ PL1 LIST

•
. PL/I Source Program

$ EXECUTE
$ LIMITS 2,SOK,-UK
$ ENDJOB

EOF

CONTROL CARDS

A detailed description of the control cards is given in the Control Cards
Reference Manual. A brief description for each card in the example is given
here.

SNUMB Control Card

The $ SNUMB control card provides an identifying name for the job. The
format of the $ SNUMB card is:

1 8 16

$ SNUMB identifier

where: identifier is a 1- to 5-character alphanumeric
name identifying the job.

2-1 DE04

IDENT Control Card

The $ IDENT control card supplies the account number for the job and the
name of the user. The format of the $ IDENT card is:

1______ 8 16______________________________

$ IDENT account-no,name

where: account-no is the account number

name is a 1- to 12-character name
identifying the user.

OPTION Control Card

The $ OPTION
program. This card

control card sets all the options
is described later, in the section on

required for loading a
the "Loader”.

PL1 Control Card

The $ PL1 control card specifies the compilation activity. Options that
direct the compilation can be given on this card. The format of the $ PL1
control card and the options that can be requested are described later, in the
section on the ’’Compiler”.

EXECUTE Control Card

The $ EXECUTE control card specifies the activity of loading and executing
the program produced as a result of the compilation activity. In response to
this card, the loader brings the program into memory and links library
subroutines to the object program. Normal termination of the loading initiates
the execution of the object program. Further discussion of the $ EXECUTE
control card is given later, in the section on the ’’Loader”.

LIMITS Control Card

The $ LIMITS control card modifies standard activity resource limits,
format of the $ LIMITS card is:

The

1_______ 8________ 16

$ LIMITS time,storage-1,storage-2,print-1ines,I/0-time

where: time is a decimal integer that specifies the maximum
processor run-time for the activity in hundredths
of an hour.

storage-1 is a decimal integer followed by ”K” that specifies
the number of 1024 word blocks requested by a slave
program that can be shared with the loader.

2-2 DE04

storage-2 is a decimal integer, followed by ”
by a minus sign, that specifies the
102U-word blocks to be added to the
General Loader to allow extra space

print-lines is a decimal integer that specifies
number of print lines to be written

1/0-time is a decimal integer that specifies
amount of I/O time in hundredths of

The $ LIMITS card is not required for PL/I compilation s
standard limits are defined:

T i me Storage-1 S torage-2 Pr i nt"1i nes

.15 90K 0 12000

ENPJOB Control Card

The $ ENDJOB control card indicates the end of the job
$ ENDJOB card is:

1______ 8_________ 16______________________________

$ ENDJOB

” and preceded
number of
size of the
for load tables.

the maximum
on SYSPRINT.

the maximum
an hour.

nee the following

JL/O-1

None

The format of the

2-3 DE04

SECTION I I I

SYSTEM INPUT/OUTPUT FILES

The file handling capability of PL/I
of file organization can be generated and

is general and flexible,
accessed by PL/I programs,

Four types
name 1y:

CONSECUTIVE
INDEXED
REGIONAL
INTERACTIVE

The basic concepts of file handling are described later, in the section on
"External Files". The section on "External Files" is followed by three sections
that give the details of file attachment and use.

A large number of PL/I programs, however, use only the system input/output
files. Since knowledge of the general capability is not required for the use of
the system input/output files, a brief description of these files is given in
thi s section.

SYSTEM INPUT/OUTPUT FILE USE

The two system files are SYSIN, the system input file, and SYSPRINT, the
system output file. These files need not be declared, opened, or closed. If
the filename is omitted from a GET statement, the filename SYSIN is assumed; if
the filename is omitted from a PUT statement, the filename SYSPRINT is assumed.

The system input/output files have the following description:

F i1 ename Attribute Record Size

SYSIN INPUT,STREAM 80 characters

SYSPRINT OUTPUT,STREAM,PRINT 132 characters

System Input/Output File Codes

Files referenced in a PL/I program are attached to external files by a file
code. The general rules for determining and using file codes are given later,
in the section on "External Files". The file codes for the system input/output
files are as follows:

F i1 ename

SYSIN
SYSPRINT

F i1 ecode

I*
P*

3-1 DEOU

To provide a program with input data on the system input file, the file code I*
is used.

System Input

The data for a PL/I program can be included in the deck that contains the
control cards and program cards. To include the data, a $ DATA control card is
used. The $ DATA control card writes files onto a temporary linked disk for
input to a user activity. The $ DATA control card has the following format:

16

$ DATA fc,options

where: fc is the 2-character code identifying the file.

options are described in the Control Cards Reference
Manual.

Deck Setup Including Program Data

When the input data for a program is included
setup of the previous section is modified to include a
fol 1ows:

in the job deck, the deck
$ DATA control card, as

$ ENDJOB
* * * EO F

1 8 16______________________________

$ SNUMB 12345
$ IDENT ZETA,X2233,STOP2
$ OPTION PL1
$ PL1

•
• PL/I Source Program

$ EXECUTE
$ LIMITS 2,30K,-4K
$ DATA 1 *

•
• Program Data

EXAMPLE OF THE USE OF THE SYSTEM INPUT/OUTPUT FILES

The use of the system input/output files is illustrated in the program
given in Figure 3-1. The program determines the largest and smallest items from
a list of five items. The list of five items is read from the system.input file
and the minimum and maximum values are printed on the system output file.

3-2 DEOU

1 8________ L6_

$ SNUMB
$ I DENT
$ OPTION PL1
$ PL1

EXAMPLE: PROC OPT IONS(MA IN);

DCL (Nl, N2, N3, N4, N5, SMALL, LARGE) FIXED BIN;
DCL (MIN, MAX) BUILTIN;

ON ENDFILE (SYSIN) GOTO EXIT;

LOOP: GET LIST (Nl, N2Z N3Z NU, N5);
SMALL = MIN(N1, N2Z N3Z N4, N5);
LARGE = MAX(N1, N2Z N3Z NA, N5);
PUT LIST (SMALL, LARGE) SKIP;
GOTO LOOP;

EXIT: END;

$ EXECUTE
$ LIMITS 2,30K,-2K
$ DATA I *
A 3 5 6 1
7 2 9 3 6
50 60 20 10 80
-15 -20 -35 -5 -10
$ ENDJOB
* * * E 0 F

Figure 3-1. The Use of Standard Files

The compiler output listing obtained from the execution of the program of Figure
3-1 is reproduced in the next section of this manual to illustrate the different
sections of an output listing.

The output from the program of Figure 3-1 follows the compiler output
listing on the standard output filez as follows:

SNUMB = 7605T, ACTIVITY # = 02 REPORT CODE ¥ 01 1 RECORD COUNT = 000005
11

1 6
2 9

10 80
-35 -5

3-3 DE04

SECTION IV

COMPILER

This section describes the PL/I compiler, the files used by the compiler,
the options that can be specified to adjust the behavior of the compiler, and
the output listing produced by the compiler.

COMPILER PHASES

A PL/I source program is translated into an executable object program by
the PL/I compiler in six phases. During these phases the compiler produces
edited error messages or object programs, as required. The six phases are:

Descr i pt i on Phase Name

Compiler control phase
Syntax analysis phase
Semantic analysis phase
Optimization phase
Code generation phase
Error message editing phase

< COMMON
PARSE
SEMANT
OPTIMIZER
CODE GENERATION
DIAGNOSTIC

The programmer can determine the phases of the compiler that operate on his
program by specifying options on the $ PL1 control card. The PARSE option
directs the compiler to perform only the syntactic analysis phase; the CHECK
option directs the compiler to perform only the syntactic and semantic analysis
phases; and the OPTZ option directs the compiler to perform an optimization
phase in addition to the usual phases of the compiler. The SEVERITY option
directs the compiler to suppress error messages with level number less than the
integer argument given with the option. A detailed description of the options
recognized by the PL/I compiler is given later in this section.

The logical flow of the PL/I compiler is illustrated in Figure 4-1. If no
options are specified, flow proceeds along the path straight down from the PARSE
phase to the DIAGNOSTIC phase.

4-1 DE04

Figure 4-1. Logical Flow of the PL/I Compiler

4-2 DE04

Compiler Control Phase (COMMON)

The compiler control phase is in main storage throughout the compilation of
a source program. This phase controls the execution of the other phases and
performs the following actions:

Establish GCOS interfaces
Interpret compiler options
Determine overlay structure
Prepare output list
Determine storage space allocation
Prepare diagnostic message output
Prepare other services

Syntax Analysis Phase (PARSE)

The syntax ana lysis phase consists of two parts:

Lexical
Parse

ana lysis

During lexical analysis, the compiler constructs a series of tokens to represent
source language statements. During parse, the token string created by lexical
analysis is used to create for the program a tree structure that represents the
relationships that exist among the elements of the source program.

Semantic Analysis Phase (SEMANT)

The Samant ic analysis phase handles declaration and semantic conversion.
The declaration process allocates storage for variables appearing in the
program. The semantic conversion process analyzes the tree structure
representing the source program and facilitates operator conversion and operand
process i ng.

Optimization Phase (OPTIMIZER)

The opt i mi zat i on phase is an optional phase that can be requested by
specifying the OPTZ option on the $ PL1 control card. The PL/I compiler
produces reasonably efficient code without this phase. Two major optimizations
are performed in this phase, namely:

Factoring of common sub-expressions
Moving invariant computations outside loops

This phase is usually requested for the final compilation of a production
program.

4-3 DE04

Code Generation Phase (COPE GENERATION)

Two functions are performed by the code generat i on phase:

Allocation of storage space
Generation of the object code

The object code is the series of machine instructions generated
representation of the program.

from the tree

Error Message Editing Phase (DIAGNOSTIC)

The error message editing phase produces edited error messages describing
the errors detected in the compilation of the source program. At the completion
of this phase, control returns to the compiler control phase and the compilation
is completed.

FILES USED DURING COMPILATION

The PL/I compiler uses standard system files, implicitly
The files used in a PL/I compilation are given in Table 4-1.
of these files to the compiler is shown in Figure 4-2.
described in more detail.

generated by GCOS.
The relationship
Each file is then

Files Used in a PL/I CompilationTable 4-1.

File
Code

—

File Name Size Type

A* Alter file variable 1i nked

B*

C*

D*

K*

p*

Object program file

Obj ect deck file

Stranger option file

Compressed deck file

Sys tern output file

2 1 i nks 1i nked

S* Source program file variable 1i nked

*3

.L

Work file

1nc1ude f i1e a

5 links random

It an i nclude file is used, it must be prepared
by the user.

DE04

Ls*

Figure 4-2. Files Used During Compilation

DE04

Al ter File

The alter file (A*) is used to make partial modification of the PL/I source
program to be compiled. A detailed description of the modification of a source
program using $ ALTER cards is given in the File and Record Control manual.

The alter file is generated by the GCOS system input module when a $ UPDATE
card is detected. The $ ALTER and source program cards are stored in the alter
file by the system input module.

Ob j ect Program File

The object program file (B*) is used to store the object program generated
as a result of the compilation of the source program by the PL/I compiler.

The object program file is generated by ALLOC, a GCOS module, when a
$ EXECUTE card occurs in the job.

Object Deck File

The object deck file (C*) contains the deck generated by the PL/I compiler.
The object deck begins with the $ OBJECT card and ends with $ DKEND card.

The object deck file is generated by ALLOC, a
option is given on the $ PL1 control card.

GCOS module, when the DECK

Stranger Option File

The stranger option file (D*)
the PL/I compiler given on the $ PL1
the options given in this file.

contains card images of options specific to
control card. The PL/I compiler interprets

The stranger option file is generated by the GCOS system input module when
options that have no commonality with other language processors are given on the
$ PL1 control card.

Compressed Deck File

The compressed deck file (K*) contains the source program
form. A detailed description of a compressed deck is given in
Record Control manual.

in a compressed
the File and

The compressed deck file is generated by ALLOC when the COMDK option is
given on the $ PL1 control card. The compressed deck is stored in the format of
an input file to the PL/I compiler and can be used as a source program input
(S*) .

4-6 DEOU

System Output File

The system output file (P*) is used when the PL/I compiler, or any other
processing program under GCOS, outputs reports or processing results. This file
is usually allocated to the system output device and is fed to this device via
SYSOUT, a GCOS module.

The maximum number of lines that SYSOUT can output for one activity is
30,000. Output beyond this limit can also be fed to the line printer by first
allocating the system output file to a magnetic file or disk and then
transferring its contents to the line printer by the Bulk Media Conversion (BMC)
modu1e.

Listings that the PL/1 compiler outputs on the system output file (P*) are
described and and illustrated later in this section.

The system output file
output.

is generated by ALLOC when processing resu1ts are

Source Program File

The source program file
input for the compilation.

(S*) contains the PL/I source program image used as

The source program file is generated by the system input module when source
cards are present in the job stream. The source program file (S*) may also be
provided by a $ PRMFL card.

Work File

The work file (*3) is used to store intermediate results.

The work file is generated by ALLOC.

INCLUDE File

The INCLUDE file is prepared by the user as a file to store macro text when
the ^INCLUDE statement is used in the PL/I program. Appendix G gives a detailed
description of INCLUDE files.

OPTIONS

By the use of options the programmer can direct the compiler in the
translation of his program. For example, options can be requested that limit or
extend the amount of processing done by the compiler, that request additional
output listings, that change the form of input and output, and that suppress a
class of error messages.

4-7 DE04

An option can be requested, negated, or omitted. An option is requested by
giving the option name on the appropriate control card; for example, to request
optimization the programmer specifies OPTZ. An option is negated by specifying
the option name prefixed with the letter ’N’; for example, to negate the option
OPTZ, the programmer specifies NOPTZ on the appropriate control card. If an
option is omitted, a default assumption is made about the specification of the
opt ion.

There are two types of options, standard opt i ons and spec i al opt i ons. The
option names and the method of specifying options are given for both types in
the following paragraphs.

Standard Options.

The standard options allow a programmer to determine which phases of the
compiler operate on his program and to specify the listings and decks produced
by the comp i1 at i on.

Standard options are specified on the $ PL1 control card. For example, the
following $ PL1 control card illustrates the specification of the standard
options ALTNO and COMDK.

1_______ 8________ 16____________ ___

$ PL1 ALTNO,COMDK

A detailed description of the control card formats used to specify the standard
options is given later in this section.

The standard options recognized for the PL/I compiler are given in Table
4-2. A brief description of the meaning and the associated default assumption
is given for each option. Following the table, a more detailed description is
given for each of the options.

DE04

Table 4-2. Standard Options

Opt ion Mean i ng Defau1t

ALTNO Produce a list of the source program with
alter numbers.

NO ALTNO

CHECK Suspend the code generation phase. NO CHECK

COMDK Produce a compressed deck of the source
program.

NO COMDK

CSYM Include in the symbol table the internal
names created by the compiler.

NO CSYM

DECK Produce a binary deck for the object
program.

NO DECK

LIST Assume that LSTOU, MAP, SYMT, and XREF
are specified.

NO LIST

LSTIN Produce the option list, expanded source
program, storage requirements, external
symbols, and compiler storage requirements.

LSTIN

LSTOU Produce a list of the object program. NO LSTOU

MAP Produce a map that associates the line
numbers of the source program with the
relative address in the object program.

NO MAP

NLSTIN Cancel the LSTIN option. LSTIN

OPTZ Optimize the object program. NO OPTZ

PARSE Suspend semantic analysis and code
generation.

NO PARSE

SEVERITYn Suppress error messages with a severity
level less than the indicated number.

SEVERITYl

SNUMBER J) Attach the line number of the source
program to error messages.

Generate a complete symbol table that
can be used at execution time.

NO SNUMBER

STAB NO STAB

SYMT Produce a list of names used in the
source program and their attributes.

NO SYMT

XREF Produce a cross reference table with the
symbol table indicating lines of
declaration and reference for each name.

NO XREF

4-9 DE04

STANDARD OPT ION NAMES

The standard options recognized by the PL/I
following paragraphs.

compiler are described in the

ALTNO Option

The ALTNO option directs the compiler to produce a listing of the source
program with attached alter numbers. The source program listing is an exact
copy of the source program input to the compiler and contains star (*) option
cards and ^INCLUDE statements. This listing is useful for determining the line
number in the program for altering the output compressed deck image, especially
if the program contains the ^INCLUDE statement or if the LONGFORM option is also
requested.

CHECK Option

The CHECK option causes the compiler to suppress the code generation phase.
Syntax analysis and semantic analysis are performed and any errors detected
during these phases are reported.

The use of this option allows the programmer to save computer time, during
the initial compilations of his program when the probability of errors is high.

COMDK Option

The COMDK option directs the compiler to produce a compressed deck of the
source program. Columns 73 through 76 of this deck contain the name of the
deck, composed of four characters specified by the TITLE option or as descrioed
below. Columns 77 through 80 contain a sequence number.

CSYM Option

The CSYM option directs the compiler to add the internal names created by
the compiler to the symbol table output listing. The attributes of each
internal name are given in the listing. The CSYM option is recognized only when
the SYMT option is also requested.

DECK Option

The DECK option directs the compiler to produce a binary deck for the
object program.

LIST Option

The LIST option directs the compiler to proceed as if the LSTOU, MAP, SYMT,
and XREF were requested. The LIST option is a convenient way to obtain a
complete output listing.

4-10 DEOU

LSTIN Option

The LSTIN option directs the compiler to produce the option listing, the
expanded source program listing, the storage space and external symbol listing,
and the storage capacity required at compile time. These listings are parts of
the compiler output listing described and illustrated later in this section.

The LSTIN option is the only option with a positive default assumption.
Therefore, if no options are specified, the output requested by the LSTIN option
is produced.

LSTOU Option

The LSTOU option directs the compiler to produce a listing of the object
program in the compiler listing. The object program is given in a format
similar to that of assembly language.

The object program listing is described and illustrated later in this
section.

MAP Option

The MAP option directs the compiler to produce the table that gives the
association between the line number of the source program and the relative
address of the generated object code for that line of source language.

The object program map listing is described and illustrated later
sect ion.

in this

OPTZ Option

The OPTZ option directs the compiler to perform an additional optimization
phase. In this additional phase, common sub-expressions are eliminated. The
code produced by the compiler, without this additional phase, is quite
efficient. The decision to request the OPTZ option is based on considerations
of program size and frequency of execution.

PARSE Option

The PARSE option directs the compiler to suppress the semantic analysis and
code generation phases. This option is useful for the initial compilations of
programs that use the ^INCLUDE statement in which syntactic errors can be
especi al 1y serious.

SEVERITY Option

The SEVERITY option, with its associated integer ’n’, directs the compiler
to suppress the listing of any error messages with level number less than ’n1.

4-11 DE04

Error levels for PL/I error messages range from level 1 (warning level) to
level 4 (fatal error). The error levels are categorized, as follows:

Fatal error.

Level Mean i ng

1 Warn i ng. The program contains a construction that may be in
error. The compilation is not affected by an error of level
1.

2 Correctable error. Errors of level 2 are corrected by the
compiler and the compilation process continues unless the
correction affects the process adversely.

3 Uncorrectable error. Errors of level 3 are not fatal, but
cannot be corrected. The compilation process continues from
the next logical point in the program, but code generation is
suspended.

Errors of level 4 cause compiler termination.

For example, the option SEVERITY2 causes warnings (level 1) to be
suppressed but allows error messages with a level greater than or equal to 2 to
be 1i s ted.

SNUMBER Option

The SNUMBER option directs the compiler to include the corresponding source
program statement number and line number in the information given by the error
trace-back when an error occurs at execution time.

STAB Option

The STAB option directs the compiler to generate a complete symbol table
for use at execution time. Variable names, label names, and entry names
referred to in the source program are arranged so that execution time debugging
can be performed conveniently.

SYMT Option

The SYMT option directs the compiler to produce the symbol table listing as
part of the compiler output listing. The symbol table listing contains the
names used in the source program with their attributes. The symbol table
listing is described and illustrated later in this section.

XREF Option

The XREF option directs the compiler to include in the symbol table listing
the line numbers on which each name is declared and referenced. The XREF option
implies the SYMT option and automatically specifies it.

4-12 DEOU

STANDARD OPTION CONTROL CARDS

Standard options are given on the $ PL1 control card, in the following way:

I_______ S_______ 16______________________________7J_______ 80

$ PL1 opt ion,opt ion,... (not used)

The options are separated by commas and can be given in any order. A control
card is terminated by a blank column, so no imbedded blanks can be included in
the option list. If the last nonblank character on the card is a comma, more
options are assumed to follow. The additional options are given on a $ ETC
control card, as follows:

card. If the $ ETC control card ends with a comma, another $ ETC control card
is assumed to follow.

1___ 8 16 73 80

$ PL1 opt i on,opt i on, (not used)
$ ETC opt ion,... (not used)

The format of the $ ETC control card is similar to that of the $ PL1 control

Each option name must be
be continued from one card to

entirely
another.

contained on one control card and canno t

The following example requests the options DECK, MAP, LSTOU, and SYMT on a
single $ PL1 control card:

$ PL1 DECK,MAP,LSTOU,SYMT

The same request can be made on several cards, as follows:

$ PL1 DECK,
$ ETC MAP,LSTOU,
$ ETC SYMT

Special Options

The special options
for different versions
compilation process, and

are used to name a program, to determine conventions
of PL/I, to request statistical information about the

to change the format of output listings.

Special options are given on star (*) control cards and are interpreted by
the PL/I compiler. For example, the following star (*) control cards assign the
name PRG1 to any output program decks, provide a listing title and request the
special option SMESSAGE.

1_______________ 13_______________ ____________________69

*TITLE ALPHA PROGRAM MAIN LISTING PRG1
*OPTIONS SMESSAGE

A detailed description of the control card formats used to specify the special
options is given later in this section.

4-13 DE04

The special options recognized by the PL/I compiler on the *0PTI0NS cards
are given in Table 4-3 with a brief description of their meanings. Following
the table, a more detailed description is given for each option.

Table 4-3. Special Options

Opt ion Mean i ng

FLOATBIN Regard scaled arithmetic fixed-point
constants as arithmetic floating
point constants.

1BMFORM Process source in columns 2-72 only.

LONGFORM Interpret the character ’#’ or in
column 1 as the continuation symbol.

SEC__SYMDEF Create for each external entry name
containing a character a
corresponding entry name to be used as
a secondary symbol.

SHORTFALL Reduce the size of the object program
by restricting the code generated for
subroutine calling sequences.

SMESSAGE Do not use the full printer for error
message output. Limit it to 80 columns.

STATUS Produce statistical data about the
compi1ation.

SPECIAL OPTION NAMES

thi s
The special
sect ion.

option names recognized by the PL/I compiler are described in

FLOATBIN Option

The FLOATBIN option directs the compiler to regard any scaled arithmetic
fixed-point constant in the source program as an arithmetic floating-point
constant.

This option is provided so that programs
language can be compiled by the PL/I compiler.

wr i tten i n the IBM DOS PL/I

4-14 DE04

I BMFORM Option

The IBMFORM option directs the compiler
through 72 of the input card. Column
processed when this option is requested. If
entire card is processed.

to process data in columns 2
1 and columns 73 through 80 are not
this option is not requested, the

LONGFORM Option

imii -The LONGFORM option directs the compiler to interpret the
@ in column 1 of the source program input card as a symbol

continuation of output lines in the source program listing
compiler. 6

character ’#’
indicating
produced by

or
the
the

. Since the image of each input card with this continuation symbol is the
’°s|cal continuation of the preceding card, the compiler- tries, insofar as
possible, to put the complete image on a single line in the program listing.

, This option is provided to allow the programmer to
listing that is easy to read and to understand. produce a program

SEC—SYMDEF Option

The SEC—SYMDEF
name to be used as a
a ’$’ character.

option directs the compiler to create a corresponding entry
secondary symbol for each external entry name that contains

The loader processing of the secondary SYMDEF occurs after the processing
of the primary SYMDEF. The General Loader manual contains a complete
description of this processing.

SHORT__CALL Option

The SHORT-CALL option directs the compiler to reduce the size of the object
program by restricting the code generated for subroutine calling sequences. The
object programs created when this option is specified are smaller in size but
execute less efficiently than programs created when the option is not requested
or is negated.

SMESSAGE Option

The SMESSAGE option directs the compiler to use only 80
printer line for the listing of error messages. This option
page width.

columns of the
i s used to limit

4-15 DE04

STATUS Option

The STATUS option directs the compiler to produce statistical
the compilation of the source program in the compiler listing.

data about

The compiling statistic list, produced as a result of requesting this
option, is described and illustrated later in this section.

SPECIAL OPTION CONTROL CARDS

Special options are given on one or more star (*) control cards. The star
control card is a PL/1 control card and contains options that are specific to
the PL/I compiler. The star control cards must be given first in the PL/1
source program input deck.

The
i s:

TITLE option card must be the first card if it is present. Its format

1____________ _____________________________ 63___________ZJ______ 80

*TITLE Listing heading of user's choice YYMMDDXXXXCnot used)

The listing heading replaces the standard main title line of the compilation
listings. The date is optional and the date of compilation is entered if
columns 63-68 are blank. The date is placed in columns 67-72 of the $ OBJECT
card of the object deck (if any). Columns 69-72 of the *TITLE card are used for
identification of output object and compressed source decks if such decks are
requested by the appropriate options. The first 32 characters of the title are
reproduced on the $ OBJECT card of the object deck (if any) beginning at column
16. If no TITLE card is present, the deck identification is four zero
characters and blanks are entered on the $ OBJECT card.

The SUBTITLE option card must be the second card if it is present. The
format is:

1____________ 13__________________________________ ___ _____________ 13_______ 80

*SUBTITLE Listing subheading (not used)

Columns 13-72 become the subtitle on the compilation listing. If there is no
SUBTITLE card the subtitle consists of the standard subtitle line that includes
the first text line image of the program.

The COPYRIGHT option card has the following format:

1_____________ 13_________________________________ _____ ___________ 13_______ 80

♦COPYRIGHT "any desired copyright message" (not used)

The given message will be printed in a box formed with asterisks on the option
listing page of the compiler output listing. A typical message could be

"COPYRIGHT 1975 BY THE ABC WIDGET CO."

4-16 DE04

The format of the OPTIONS option card is as follows:

■1------------------------ 12------------ — _____________________________________ 73_______ 80

*OPTIONS option,... (not used)

The special options given in Table 4-3 are separated by commas and can be given
in any order. More than one *OPTIONS card may be present.

Example of the Use of Options

The following program fragment illustrates the use of both standard and
special options:

1_______ S_____ 1_5 16 _____________________________________ 69

*0PTIONS SMESSAGE,STATUS

$ SNUMB 12345
$ IDENT ZETA,X2233,ST0P2
$ OPTION PL1
$ PL1 DECK,COMDK,LIST,
$ ETC ALTNO
*TITLE PROG1

PL/I Source Program

$ EXECUTE
$ LIMITS
$ ENDJOB
* * * EO F

2,30K,-4K

PRGA

The standard options DECK, COMDK, LIST, and ALTNO and the special options
SMESSAGE and STATUS are requested.

COMPILER OUTPUT LISTING

The compiler output listing is divided into sections. Each section is a
listing that gives information about the source program, the compilation, or the
object program. The programmer can select the sections of the listing to be
produced by specifying options. The sections are shown in Table 4-4 in the
order in which they appear, if requested, in the output listing. Associated
with each section in the table is the option whose specification causes that
section of the listing to be produced.

Following the table, each section of the listing is described and
illustrated. The program EXAMPLE, given in Figure 3-1, was used to produce the
sample listings included here.

4-17 DE04

Table 4-4. Sections of the Compiler Output Listing

Sect ion Opt ion

Alter listing ALTNO

Compiler option listing LSTIN

Expanded source program listing LSTIN

Symbol table SYMT

Cross reference table XREF

Storage space and external
symbo1 listing

LSTIN

Object program map MAP

Object program listing LSTOU

Error message listing SEVERITYn

Compiling statistics listing STATUS

Storage capacity required
at compi1e time

LSTIN

Alter Listing

The alter listing is a listing of the source program with alter numbers.
This listing is used to change the compressed deck of the source program. The
numbers associated with the lines of the source program in the alter listing can
be different from the line numbers in the expanded source program listing due to
the presence of star (*) option cards and the ^INCLUDE statement.

The alter listing for the sample program
shows that the special option STATUS was given on

EXAMPLE follows. This listing
a star (*) control card.

ALTER NO SOURCE IMAGE OF THIS PROGRAM

1 *OPTIONS STATUS
2 EXAMPLE: PROC OPT IONS(MA IN);
3 DCL (Nl, N2, N3, N4Z N5Z SMALL, LARGE) FIXED BIN;
4 DCL (MIN, MAX) BUILTIN;
5 ON ENDFILE(SYSIN) GOTO EXIT;
6 LOOP: GET LIST(N1, N2, N3, N4, N5);
7 SMALL = MIN(N1, N2, N3, N4, N5);
8 LARGE = MAXCNl, N2, N3, N4, N5);
9 PUT LISTCSMALL, LARGE) SKIP;

10 GOTO LOOP;
11 EXIT: END;

4-18 DE04

Compiler Option Listing

The complete set of standard option specifications
listing. Options that are not specified on control cards are
the default interpretation described earlier in this section.

is gi ven in this
assumed to have

Any special options given on a star (*) control card are listed. The
complete set of special options, however, is only included in the listing when
the STATUS option is requested.

The compiler option listing produced as a result of a job that requested
the standard options ALTNO, COMDK, CSYM/ and DECK and the special option STATUS
is given below.

OPTIONS USED IN THIS COMPILATION

*OPTIONS STATUS

COMPLETE LIST OF OPTIONS

NO
NO
NO
NO

NO
NO
NO
NO
NO

NO
NO

NO
NO
NO
NO
NO

LSTIN
LIST
MAP
SYMT
LSTOU
ALTNO
CSYM
PARSE
CHECK
OPTZ
SEVERITY
STAB
DECK
COMDK
SNUMBER
XREF
STATUS
SHORTFALL
LONGFORM
IBMFORM
SEC_SYMDEF
FLOATBIN

Expanded Source Program Listing

The expanded source program listing gives a numbered list of the source
program. If a ^INCLUDE statement is present, it is replaced in this listing by
the expanded image. The nesting level of the DO group is given on each line,
following the line number.

If the LONGFORM option is requested, the expanded source program listing
occupies columns 9 - 136.

4-19 DE04

The expanded source program listing for the sample program EXAMPLE is given
below. Notice that the line numbers differ from the line numbers in the alter
listing given earlier in this section due to the presence of the star (*)
control card.

COMPILATION LISTING OF PROGRAM: EXAMPLE: PROC OPT IONS(MA IN);

1 EXAMPLE: PROC OPT IONS(MA IN);
2 DCL (Nl, N2, N3, N4, N5, SMALL, LARGE) FIXED BIN;
3 DCL (MIN, MAX) BUILTIN;
4 ON ENDFILE(SYSIN) GOTO EXIT;
5 LOOP: GET LISTCNl, N2, N3, N4, N5);
6 SMALL = MINCNl, N2, N3, NU, N5);
7 LARGE = MAXCNl, N2, N3, N4, N5);
8 PUT LISTCSMALL, LARGE) SKIP;
9 GOTO LOOP;

10 EXIT: END;

Symbol Table and Cross Reference Table

The
program.

symbol table listing is a list of names declared or used in the source
The names are given in the following order in the table:

Names declared explicitly by the DECLARE statement.

Names declared but not used.

Names declared explicitly through context outside of the DECLARE
statement. (For example, label constants, format constants, and entry
constants.)

Names declared implicitly or by context.

For each name, the following information is listed:

• If the name is that of a structure member, its structure relative
address is given in the form of a word offset (in octal) and bit
offset (i n decimal).

• Address.

• Storage space attributes.

• Data type attributes.

If the XREF option is requested,
for each name in the symbol table,
line numbers of the declarations and
as to whether or not the value of the variable is set.

the cross reference listing is produced
The cross reference listing indicates the

references for each name and an indication

References to a DEFINED variable are included in the cross reference table
for the base variable since the storage generation for the two variables are the
same. The cross reference table for a pointer variable, which, implicitly
modifies (i.e., appears in the declaration of) a BASED variable, includes all
references to the BASED variable except those using a different pointer for
qualification. If the BASED variable has an upper bound, lower bound, or length
specified by an expression, a simple reference to the BASED variable implies a
reference to any variables used in the expression.

4-20 DE04

The symbol table and the cross reference table for the sample program
EXAMPLE is given here. For reproduction in this manual/ the format has been
compressed by reducing the length of each field on the listing.

*** NAMES DECLARED IN THIS COMPILATION ***

IDENTIFIER OFFSET LOC STORAGE CLASS DATA TYPE ATTR AND REFERENCES

NAMES DECLARED BY DECLARE STATEMENT
LARGE 000014 AUTOMATIC FIXED BlN(17,0) DCL 2 SET REF 7 8
MAX BUILTIN FUNCTION INTERNAL DCL 3 REF 7
MIN BUILTIN FUNCTION INTERNAL DCL 3 REF 6
N1 000006 AUTOMATIC FIXED Bl N(17,0) DCL 2 SET REF 5 6 7
N2 000007 AUTOMATIC FIXED Bl N(17,0) DCL 2 SET REF 5 6 7
N3 000010 AUTOMATIC FIXED Bl N(17,0) DCL 2 SET REF 5 6 7
N4 000011 AUTOMATIC FIXED Bl N(17, 0) DCL 2 SET REF 5 6 7
N5 000012 AUTOMATIC FIXED BIN(17,0) DCL 2 SET REF 5 6 7
SMALL 000013 AUTOMATIC FIXED BIN(17,0) DCL 2 SET REF 6 8

NAMES DECLARED BY EXPLICIT CONTEXT
EXAMPLE
EXIT
LOOP

000035 CONSTANT
000167 CONSTANT

ENTRY
LABEL
LABEL

EXTERNAL DCL 1 REF 1
DCL 10 REF 10 4
DCL 5 REF 5 9000074 CONSTANT

NAMES DECLARED BY CONTEXT OR IMPLI CATION
ENDFILE 000015 STACK REF CONDITION REF 4
SYS IN 000003 CONSTANT FILE SET REF 4 5
SYSPRINT 000004 CONSTANT FILE SET REF 8

Storage Space and External Symbol Listing

The storage space listing gives the amount of storage required for the
object program and the automatic storage requirements. The object program size
is given in words and includes the required storage space for INTERNAL STATIC
variables and constants. The number of V count bits is also given. The number
of words of automatic storage determined by the constants required for the
procedure block and the automatic storage required by BEGIN blocks and ON units
are given in this listing.

The external symbol listing gives the external operators, external entries,
and external variables used in the program.

4-21 DE04

The storage space listing and
program EXAMPLE are, as follows:

external symbol listing for the sample

COMPILATION LISTING OF PROGRAM: EXAMPLE: PROC OPT I0NS(MAIN);

★STORAGE REQUIREMENTS FOR THIS PROGRAM*

OBJECT PROGRAM SIZE IS 120 WORDS. (V COUNT 5)

EXTERNAL PROCEDURE "EXAMPLE" USES 58 WORDS OF AUTOMATIC STORAGE
ON UNIT ON LINE 4 USES 6 WORDS OF AUTOMATIC STORAGE

★THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM*
GET LIST NP AL EXT_ENTRY ON_UNIT_ENTRY RETURN_MAC
putZlist_np_al TRA_EXT_1 GET_TERMINATE PUT_TERMINATE
ENABLE_FILE GET_PREP PUT_PREP

★NO EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM*

★THE FOLLOWING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM*
SYSIN SYSIN# SYSPRINT SYSPRINT#

★EXTERNAL NAMES AND CONVERTED NAMES OF THEM*

EXAMPLE 7EMPLE

SYSPRINT 8SRINT

Ob j ect Program Map

The object program map listing is produced when the MAP option or the LIST
option is requested. The object program map listing gives for each line of the
source program the relative address for the start of the cor respond!ng.object
program code. The number of words required for the object code translation of
the source line is also given in the form of a zero-suppressed decimal number,
truncated to 2 digits.

The object program map for EXAMPLE is given here, compressed
columns per line. The actual computer listing gives seven columns per

to four
line.

★OBJECT MAP*

LINE SIZE LOC LINE SIZE LOC
1 5 000032 3 000043
6 14 000115 7 14 000133

10 1 000167

LINE SIZE LOC LINE SIZE LOC
4 6 000055 5 5 000074
8 7 000151 9 1 000166

4-22 DE04

Object Program Listing

When the LSTOU option is requested, the object program listing is produced.
This listing consists of the series of assembly language instructions produced
as a result of the translation of the source program.

The object program is produced in the following order:

INTERNAL STATIC region
Label constant array
Literal constants
FORMAT information
Object program procedure

A portion of the object program listing for the sample program EXAMPLE is
given below:

BEGIN PROCEDURE "EXAMPLE"
ENTRY TO "

000032
000033
000034

EXAMPLE”
105 130
120 114
000000

101 115
105 040

000007

000
000
000

EXAM
PLE
ZERO

STATEMENT

0,7

1 ON LINE 1

000035 050000 7000 00 030 TSXBP .P0090 EXT-ENTRY
000036 000000 000072 000 ZERO 0, 58
000037 000035 4500 12 000 STZ 29, SP
000040 000035 7420 12 000 STXSP 29,SP
000041 000022 6200 12 000 EAXBP 18,SP
000042 000004 7400 12 000 STXBP 4, SP
000043 020000 6200 00 030 EAXBP SYSPRINT#
000044 000000 6360 10 000 EAQ 0, BP
000045 040000 7560 00 030 STQ SYSPRINT
000046 777751 6360 04 000 EAQ -23, IC 000017
000047 020003 7560 00 030 STQ SYSPRINT#+3
000050 010000 6200 00 030 EAXBP SYSIN#
000051 000000 6360 10 000 EAQ 0, BP
000052 030000 7560 00 030 STQ SYSIN
000053 777731 6360 04 000 EAQ -39, IC 000004
000054 010003 7560 00 030 STQ SYSIN#+3

000055 000007 7260 07 000 LXL6
STATEMENT 1

7, DL
ON LINE 4

000056 030000 6200 00 030 EAXBP SYSIN
000057 777723 6350 04 000 EAA -45, IC 000002
000060 060000 7010 00 030 TSXLP .P0376 ENABLE—FlLE
000061 000006 7100 04 000 TRA 6, IC 000067
000062 000012 7100 04 000 TRA 10, IC 000074

4-23 DE04

Error Message Listing

The error message listing contains the errors that are detected during the
translation of the source program. Each error message has an associated level
number, between one and four. A description of the error level classification
is given in connection with the SEVERITY option earlier in this section.

The error message list gives the error number, the severity level, the line
number in the source listing at which the error was detected and explanatory
text describing the error.

The error message listing for the sample program EXAMPLE is given below.
An error of severity level 1 is printed as a WARNING.

WARNING 75
THE UNDECLARED IDENTIFIER "SYSPRINT" HAS BEEN CONTEXTUALLY DECLARED AS A FILE
CONSTANT. IT WILL ACQUIRE DEFAULT ATTRIBUTES.

WARNING 133
THE UNDECLARED IDENTIFIER "ENDFILE" HAS BEEN CONTEXTUALLY DECLARED AS A
CONDITION NAME. IT WILL ACQUIRE DEFAULT ATTRIBUTES.

WARNING 75
THE UNDECLARED IDENTIFIER "SYSIN" HAS BEEN CONTEXTUALLY DECLARED AS A FILE
CONSTANT. IT WILL ACQUIRE DEFAULT ATTRIBUTES.

WARNING 495
IMPLEMENTATION RESTRICTION: LONG EXTERNAL NAME "EXAMPLE"
6 CHARACTER NAME. RESTRICTIONS ARE: EXTERNAL FILE NAME
EXTERNAL NAME SIZE <= 6.

HAS BEEN CONVERTED TO A
SIZE <= 5 AND OTHER

WARNING 495
IMPLEMENTATION RESTRICTION: LONG
A 6 CHARACTER NAME. RESTRICTIONS
EXTERNAL NAME SIZE <= 6.

EXTERNAL NAME "SYSPRINT" HAS BEEN CONVERTED TO
ARE: EXTERNAL FILE NAME SIZE <= 5 AND OTHER

Compiling Statistics Listing

When the STATUS option is requested, the compiling statistics listing is
produced. This listing contains statistical information about the performance
of the compiler in the translation of the source program.

4-24 DE04

The compiling statistics listing summarizes the usage of tokens, nodes,
symbols, statements, and core. The compi1ing statistics listing for the sample
program EXAMPLE is given below.

COMPILATION LISTING OF PROGRAM: EXAMPLE: PROC OPT IONS(MA IN);

STATISTICAL DATA FOR PROGRAM

<SUMMARY OF TOKEN USAGE>

THE NUMBER OF TOKENS IS 59
THE NUMBER OF EMPTY HASH TABLE SLOT IS 160
THE MAXIMUM NUMBER OF TOKENS IN A SLOT IS 2
THE TOTAL NUMBER OF WORDS IS 332

<SUMMARY OF SYMBOL USAGE>

THE TOTAL NUMBER OF COMPILER CREATED SYMBOLS IS 16

<SUMMARY OF NODE USAGE>

BLOCK 4 STATEMENT 27 OPERATOR 52 REFERENCE 80
TOKEN 59 SYMBOL 28 CONTEXT 3 LIST 18
MC-STATE 2 STORAGE 28 LABEL 6 XREF 1

<SUMMARY OF STATEMENT USAGE>

DUMMY—ST 1 ASSIGN ETC. 12 END 2 GET 3
GOTO 2 NULL 2 ON 1 PROCEDURE 2
PUT 2

<SUMMARY OF CORE USAGE>

* MAXIMUM STACK SIZE = 004651
* SIZE FOR PGM-TREE = 001262
* EXTENDED CORE SIZE = 000000

Storage Capacity Required at Compile Time

This section of the compiler listing consists of a single line giving the
amount of storage required to compile the program, as follows:

** 66K WAS USED TO COMPILE THIS PROGRAM.

For the sample program EXAMPLE, 66K was required to compile the program.

4-25 DE04

SECTION V

LOADER

This section provides an introduction to the General Loader activities
necessarv for the execution of a PL/I program in the GCOS environment. The
loader functions, loader control cards, and overlay structures are described. A
detailed description of the loader is given in the General Loader manual.

DESCRIPTION OF LOADER FUNCTIONS

The General Loader produces an executable unit from a set of object
programs, control cards, and libraries. The General Loader performs the
following functions:

Linkage of object programs into a single object unit

Linkage of referenced library routines to the object unit

Assignment of main storage space required by the program, including
common reservations

Definition of the overlay structure

Creation of file control blocks for the manipulation of files required
by the object program

Upon completion of this processing, the loader passes control to an entry name
within the object unit and the execution of the object programs begins.

Loader Processing

The object decks created by the PL/I compiler and other language processors
are composed of two types of cards: preface cards and text cards. Preface cards
contain information about the size and external names of the object program.
The internal procedure names declared in the program (SYMDEFs), the external
procedure names referenced in the program (SYMREFs), and the external variables
declared and referenced in the program (Labeled Commons) are given on preface
cards. Tg.,^t ca.rds contain the machine instructions and data for the program.

The loader obtains input from the GCOS standard files identified by the
file codes R* and B*. The loader control file (R*) contains control cards and
object programs from the input deck. The object program file (B*) contains
object programs produced by the PL/I compiler. The loader’s primary input is
the loader control file. When the loader encounters a $ SOURCE control card on
that file, it inputs the cor responding object program from the object program
file.

5-1 DEOU

When the object programs are loaded, the external variable procedure names
referenced by the programs are resolved. The loader uses information contained
on the preface cards to resolve SYMREFs, searching first any user-suppligd
libraries, then the secondary svstem standard library (*L), and finally.the
system standard library (L*). Every library program included in the object
program by the PL/I compiler in the translation of.the source program is
contained in the standard system library. (Some installations may include them
in the secondary system standard library.)

Input Deck Processing

Figure 5-1 illustrates the processing of a typical input deck by GC0S,.the
construction of the files used by the loader, and the processing of these files
by the loader. Following the figure, the action taken by GCOS for each control
card is described. Then, the action taken by the loader for each control card
on the loader control file is given.

5-2 DE04

Ul,R,R,US ER/LIBRARY

ENDJOB

COMPILER

LOADER

DKEND

seconda ry
standard

(Ul)
use r- MAIN STORAGE

SPACEstandard
system

PRMFL

EXECUTE

LIBRARY Ul

$ SNUMB

$ IDENT

$ OPTION pl:L

$ PL1

PL/1 source A

$ OBJECT
object deck B

$ DKEND

$ PL1

PL/1 sou rce C

$ OBJECT
object deck D

$ DKEND

$ PL1

PL/1 sou rce E

(R*)

$ OPTION PL1

/ $ SOURCE

$

z $

OBJECT
object
DKEND

deck B

' $ SOURCE

$

$

OBJECT
object
DKEND

deck D

■ $ SOURCE

$ LIBRARY Ul

$ EXECUTE

object
file

program
(B*)

$

$

OBJECT
object
DKEND

deck A

$

$

OBJECT
object
DKEND

deck C

$ OBJECT

Figure 5-1. Input Deck Processing

5-3 DE04

GCOS processes the
indicated control cards:

input deck and performs the following actions for the

Card Act i on

$ SNUMB Records the information on these cards for accounting purposes.
$ IDENT

$ OPTION

$ PL1

$ OBJECT
$ DKEND

$ PL1

$ OBJECT
$ DKEND

$ PL1

$ LIBRARY

$ EXECUTE

Copies the $
(R*).

OPTION control card to the loader control file

Writes a $ SOURCE card on the loader control file
limits, allocates files and arranges for control
to the PL/I compiler to translate program A.

(R*), sets
to be passed

The PL/I compiler reads as its source program all cards up to
the next control card, translates the source program A, and
produces the object program for A on the object program file

object deck B with its delimiting control cards to
control file (R*) .

Writes a $ SOURCE card on the
performs, for source program
above for source program A.

loader control file (R*) and
C, the same actions as described

Copies the object deck D with its delimiting control cards to
the loader control file (R*).

Writes a $ SOURCE card on the loader control file
performs, for source program E, the same actions as
above for source programs A and C.

(R*) and
descr i bed

Cop i es the $ LIBRARY card to the loader control file (R*).

Passes control to the General Loader.

The General Loader then reads the loader control file
during the processing of the input deck and performs the
the indicated control cards:

(R*) created by GCOS
following actions for

$ OPTION Sets the loader options necessary for the execution of a PL/1
program, namely: LOWLOAD and PSETU.

$ SOURCE Loads the object program (A) from the object program file (B*).

$ OBJECT Loads the enclosed object program (B).
$ DKEND

$ SOURCE Loads the object program (C) from the object program file (B*).

$ OBJECT Loads the enclosed object program (D).
$ DKEND

$ SOURCE Loads the object program (E) from the object program file (B*).

$ LIBRARY Searches the user-supplied library (Ul) to resolve any
undefined SYMREFs, then the secondary system standard library
(*L) and the system standard library (L*).

$ EXECUTE Passes control to the object program at the appropriate entry
point.

5-U DEOU

LOADER CONTROL CARPS

Loader control cards give information to the General Loader about the
object programs that are to be executed. These control cards indicate the
beginning, end, and entry point name for the object programs and define options,
libraries, and memory allocation methods. In addition, the program can be
divided into overlay segments by the use of the loader control card $ LINK. A
more detailed description of these and other loader control cards can be found
in the General Loader manual and Control Card Reference Manual.

The loader control cards described in this manual are summarized in Table
5-1. Following the table, the cards are described in more detail.

Table 5-1. Loader Control Cards

Card
Name Mean i ng Parameters1

DKEND End Object deck.

ENTRY Specify SYMDEF name to which
Loader passes control.

name

EXECUTE Conclude loading and pass
control to object program.

sense swi tches,
dump option

FFI LE Describe nonstandard file
control blocks and options.

opt i ons

LIBRARY Include user libraries
to resolve SYMREFs.

file codes of
user 1i brar i es

LINK Define overlay structure. segment names,
opt i on

OBJECT Begin object deck.

OPTION Define Loader options opt ions

SOURCE Read object program from
object program file (B*).

USE Define Labeled Common Block
or SYMREF.

name and size

^•Refer to the General Loader manual for a deta i1ed descr i pt i on of the
parameters.

5-5 DEOL

DKEND Control Card

The $ DKEND control card Indicates the end of the absolute or relocatable
deck. The PL/I compiler generates this card at the end of the object deck. The
$ DKEND card has the following format:

ENTRY Control Card

The $ ENTRY control card specifies the name to which the loader passes
control upon the completion of the loading process. The $ ENTRY control card
has the following format:

$ ENTRY name

where: name

If this card is
external entry name
statement or to the

is a SYMDEF corres ponding to an external
for the program.

not included, the loader passes control
that has the OPTIONS (MAIN) attribute
special SYMDEF , if present.

entry point name

to e i the r the first
in its PROCEDURE

EXECUTE Control Card

The $ EXECUTE control card causes GCOS to activate the loader to load all
the programs in the activity. The options on the $ EXECUTE control card request
the setting of sense switches and the form of the dump. The $ EXECUTE card has
the following format:

1______ 8________ 1,6 ____________________

$ EXECUTE options

where: the following options can appear:

ONI Set sense switch 1 on.
0N2 Set sense switch 2 on.
0N3 Set sense switch 3 on.
ONU Set sense switch U on.
0N5 Set sense switch 5 on.
0N6 Set sense switch 6 on.
DUMP Take full dump if activity terminates abnormally.
NDUMP Dump only registers if activity terminates abnormally.

5-6 DEOU

If no options are requested on the $ EXECUTE control card, all sense switches
are set off and only the registers are dumped on abnormal termination of an
activity.

FFILE Control Card

The $ FFILE control card describes nonstandard file control blocks and
nonstandard file options. This control card is described later, in the section
on "External Files".

LIBRARY Control Card

$ LIBRARY control card directs the loader to search the user-supplied
libraries whose file codes are given as parameters. The libraries are searched
in the order in which they appear on the card. The format of the $ LIBRARY card
is as foilows:

1______ 8________ 16 _________________________

$ LIBRARY fc,...

where: fc is the 2-character alphanumeric file code of the user library.

Consider the following card:

$ LIBRARY Al,C2

If this card is included, the loader searches the user library identified by the
file code Al and then the user library identified by C2 to resolve SYMREFs.

LINK Control Card

The $ LINK control card defines the overlay structure. The parameters on
this card define the name of the segment, and optionally the name of the
previously defined segment to be overlaid by this segment and the NOPAC option.
The format of the $ LINK card is as follows:

16

LINK seg-name[,oseg-name[,NOPAC]]

where: seg-name is the name of the segment composed of the programs
following the control card up to the next $ LINK or
$ EXECUTE control card.

oseg-name is the name of the previously defined segment
over laid.

to be

NOPAC indicates that SYMDEFs in the overlaid segment
refe renced.

can

5-7 DEOU

The $ LINK control card is described in more detail later
in connection with the definition of overlay structures.

i n this section

OBJECT Control Card

The $ OBJECT control card indicates the beginning of the absolute or
relocatable deck. The PL/I compiler generates this.card at the beginning of the
object program produced as a result of the translation of the source program.
Identification is included on the card in the following format:

1______ 8________ 16

$ OBJECT

TTL date (see *TITLE description. Section IV)—

deck name (n characters, n = 0-4)
sequence number (8-n characters)

For example:

$ OBJECT

indicates the following:

col 60 = P

col 67 - 72 = 111574
col 73 - 76 = CALC
col 77 - 80 = 0000

P 111574CALC0000

The card was generated by the PL/I
compi 1 er.
TTL date is November 15, 1974.
The deck name is ’CALC’.
The sequence number is 0.

OPTION Control Card

The $ OPTION control card specifies options for the loader. The $ OPTION
card has the following format:

1______ 8________ 16_________________________ _

$ OPTION options

where: option describes the execution of the program and the output of the
loader.

The options that can be specified are given in Table 5-2.

5-8 DE04

Table 5-2. Loader Options

Opt i on
Name Mean i ng Defau1t

MAP Generate a memory map. MAP

NOMAP Do not generate a memory map. MAP

CONGO Execute even if errors detected. CONGO

GO Execute only if no errors detected. CONGO

NOGO Do not execute. CONGO

ERCNT/n/ Abort the program if the total
number of errors exceeds n.

ERCNT/150/

SYMREF Include the SYMREF symbols used by
each subprogram in the memory map.

NOSREF

NOSREF Do not include SYMREF symbols in
the memory map.

NOSREF

PL1 Specify all necessary conditions
for the execution of PL/1 programs
(LOWLOAD, PSETU).

NOMSUB Suppress the missing routine message.

SOURCE Control Card

The $ SOURCE control card is generated by GCOS on the loader control file
(R*) when a system call card (for example $ PL1) is encountered. The format of
the $ SOURCE card is as follows:

1______ 8________ 16___________________________

$ SOURCE

This card indicates that the object program input for the loader is to be found
on the object program file (B*).

5-9 DE04

USE Control Card

The $ USE control card specifies a name for the Labeled Common Block or
SYMREF. A numeric size enclosed in slants immediately following the name
defines the name to be a Labeled Common Block; otherwise, the name is assumed to
be a SYMREF. The format of the $ USE control card is as follows:

16

is the name of a Labeled Common Block or SYMREF.where: name

is the amount of storage to be
Common Block.

s i ze

The loader enters the name in its symbol table and, if a size is given, sets
aside the necessary storage.

Consider the following example:

ALPHA/U00/,PXY,BETA/200/USE

ALPHA is a Labeled Common Block 400 words long.
PXY is a SYMREF
BETA is a Labeled Common Block 200 words long.

The $ USE control card is necessary for the attachment of INTERACTIVE, INDEXED,
and REGIONAL files. This usage is described later, in the section describing
file attachment.

OVERLAY STRUCTURE

A program that exceeds main storage capacity can be executed as an overlay
structure. By the use of $ LINK control cards, a program is divided into a
series of segments. These segments share storage and, therefore, must be loaded
during the execution of the program as they are needed.

The definition of the overlay structure by $ LINK control cards, the tree
representation for an overlay structure, and the routines used to load overlay
segments are described in the following paragraphs.

Segment Definition

The $ LINK control cards delimit the segments of the overlay structure. A
$ LINK control card with a segment name defines as the named segment the
programs between that card and the next $ LINK or $ EXECUTE card. The segment
name consists of one to six alphanumeric characters, the first of which must be
alphabetic. Segment names must be unique with respect to SYMDEFs and other
segment names.

5-10 DE04

Consider the following fragment of an input deck:

$
$

$
$

$
$

LINK ASEG
OBJECT

object program Al
DKEND
PL1

source program A2
LINK BSEG
PL1

source program Bl

LINK CSEG

Two segments are defined in this fragment: ASEG and BSEG. The segment ASEG
consists of the object program Al and the object program produced as a result of
the compilation of the source program A2. The segment BSEG consists of the
object program produced as a result of the compilation of the source program Bl.

Root Segment

The main segment of the overlay structure/ the root segment, remains in
main storage through the entire activity. The programs in the input deck
preceding the first $ LINK control card make up the root segment. The loader
generates the name ’//////1 for the root segment.

Segment Overlays

defines aThe $ LINK control card with two segment names as parameters
segment overlay. For example:

$ LINK DSEG/BSEG

This card indicates that the segment
and that the segment DSEG overlays the
loader assigns the segment DSEG to
BSEG.

DSEG is defined by the programs following
previously defined segment BSEG. The
the same starting location as the segment

Example of an Overlay Setup

An input deck defining an overlay structure is given here. Following the
deck setup a diagram of the memory allocation produced by the loader is given.

5-11 DEOU

Consider the input deck:

1 8 ___ 16

$ SNUMB
$ IDENT
$ OPTION PL1
$ PL1_______________

source program
for root segment

$ LINK ABC
PL1______________

source program
A ________

$ LINK DEF
$ PL1______________

source program
D_________________

$ LINK GHI
$ PL1

source program
 G _____

$ LINK JKL,GHI
$ PL1

source program
J_________ _______

$ LINK MNO,DEF
$ PL1____________

source program
M_________

$ LINK PQR,ABC
$ PL1______________

source program
P________________

$ LINK STU
$ PL1______________

source program
S __________

$ LINK VWX,STU
$ PL1

source program
V________________

$ EXECUTE

root segment

segment ABC

segment DEF

segment GHI

segment JKL

segment MNO

segment PQR

segment STU

segment VWX

This input deck defines a root segment and eight overlay segments, namely: ABC,
DEF, GHI, JKL, MNOZ PQR, STUZ and VWX. The segments JKL and GHI overlay each
other, as do segments MNO and DEF, PQR and ABC, and VWX and STU. Each segment
in this example is made up of a single source program. However, the segments
can be made up of any number of source and object programs as is i1 lustrated in
a more general example later in this section.

5-12 DEOU

The loader allocates storage based on the $ LINK control
allocation of storage can be diagrammed in the following way:

card. The

low address

GHI JKL

MNO

STU VWX

DEF

PQRABC

mill
root segment

hi gh address

The solid horizontal lines in this diagram indicate the points at which the
loader resets its loading origin as a result of encountering a $ 1 INK control
card with two segment names. The broken horizontal lines indicate the end of
the shorter overlay segment.

Tree Representation

A tree provides a convenient form
structure. The tree representation for the

of representation for
structure just described

an
i s:

over 1 ay

GHI JKL

STU VWX

ABC PQR

5-13 DE04

A tree representation makes explicit the notion of the path. A path is a
route that can be traced from the root of the tree to one of the tips. The
paths of the above tree are:

//////-ABC-DEF-GHI
//////-ABC-DEF-JKL
//////-ABC-MNO
//////-PQR-STU
//////-PQR-VWX

If two segments are connected by a path, these segments are said to be
common to a path. Notice that the root segment, //////, is common to every path
of the tree. The segments ABC and JKL are common to a path, namely: the second
path on the above list of paths. The segments ABC and VWX are, however, not
common to any path of the tree.

References Between Segments

Programs can reference other programs in the same segment or programs
contained in segments on a common path with their containing segment. If there
is no common path between two segments, the programs of one segment cannot
reference the programs of the other segment. Programs of segments not on a
common path share storage and are, therefore, not usually in memory at the same
time.

Programs of segments on separate paths can communicate with each other
through the root segment or through a segment closer to the root segment that is
common to both paths. For example, the program S of segment STU cannot
communicate directly with the program V of segment VWX, but both S and V can
communicate with the program P of segment PQR since there is a path through PQR
and STU and through PQR and VWX.

The loader prohibits references between programs belonging to segments on
separate paths by removing the names defined in overlaid segments from its
symbol table. References to such names therefore become undefined.

It sometimes happens, however, that segments on separate paths co-exist in
memory. Consider, in the previous example, the segments GHI and MNO. Clearly,
the loading of MNO does not in any way affect the contents of GHI, if GHI is in
memory. The NOPAC option of the $ LINK control card allows programs in a
segment to reference programs in an overlaid segment. If the program M of
segment MNO references the program G of segment GHI, the $ LINK control card
defining the segment must be:

$ LINK MNO,DEF,NOPAC

The NOPAC option directs the loader to omit the step that removes the names
defined in the overlaid segment DEF from the symbol table. These names are then
available to the programs of MNO, and the reference from M to G is defined.

5-14 DEOU

Loading Segments

The loader converts each segment into a load module stored on the program
link file (H*), which is provided by the system (as a temporary file) if it is
not provided by the user. The loader then loads the root segment into main
storage and passes control to any entry name within the root segment. The
user's program is responsible for loading the overlay segments into main storage
as they are needed. Two programs, PLINK and PLLINK, are provided in the PL/I
standard library to accomplish this loading. These two programs differ from
each other only in the way in which control is returned.

PLINK loads the segment named as its
(H*) and passes control to the
$ ENTRY control card.

argument from the program link file
entry name defined by the use of the

PLLINK loads the segment named as its argument from the program link file
(H*) and returns control to the statement following the call to
PLLINK.

Consider the following portion of an overlay segment:

16

$ LINK XSEG
$ PL1__________

A: PROCEDURE;

_________END;_______
$ ______ PL1__________

B: PROCEDURE;

_________END;_______
$ ENTRY B
$ LINK YSEG

The following two examples illustrate the loading of the segment XSEG, first
using PLINK and then using PLLINK.

5-15 DE04

EXAMPLE USING PLINK

The subprogram PLINK is used to load and transfer control
B in the segment XSEG in the following example:

to the entry name

PROG1: PROCEDURE;

DECLARE PLINK ENTRY(CHARACTERC6));

CALL PL INK(’XSEG ’);

END;

EXAMPLE US I NG PLLINK

The subprogram
example. Control is
the entry name B.

PLLINK is used to load the segment XSEG in the following
subsequently transferred to the segment XSEG by the call to

PROG2: PROCEDURE;

DECLARE PLLINK ENTRY(CHARACTER(6));

CALL PLLINKC'XSEG ');

CALL B;

END;

EXAMPLE OF THE USE OF OVERLAYS

The deck setup for an example using overlays is given here. The tree
representation defined by the overlay structure and a diagram of the processing
of this example by the loader are also included. Note, in this example, that
$ ENTRY cards for the overlay segments are not required since only PLLINK is
used.

5-16 DEOU

Deck Setup for Example QVLY

1 8 16

SNUMB
IDENT
OPTION PL1
PL1 __________________________________

A: PROCEDURE OPT IONS(MA IN);
DECLARE PLLINK ENTRY(CHARACTER(6));

CALL PLLINK('SEG1 1);
CALL X;

CALL PLLINK(’SEGU ’);
CALL Y;

________ END;_______
PL1__________

B: PROCEDURE;

________ END;_______
PL1__________

C: PROCEDURE;

________ END;_____________________________________
ENTRY A
LINK SEG1
PL1__

X : PROCEDURE •
DECLARE PLLINK ENTRY(CHARACTERC6));

CALL PLLINK('SEG2 ');
CALL Z;

CALL B;

CALL PLLINKC’SEG3 1);
CALL V;

CALL C;

END;

DEOU

Deck Setup for Example QVLY (cont)

1 8 16

$ LINK SEG2
$ r______ PL1__________

Z: PROCEDURE;

_________END;_____________
$ LINK SEG3,SEG2
$ PL1________________

V: PROCEDURE;

________ END;_____________
$ LINK SEG4/SEG1

$ LIMITS

$ ENDJOB
* * * EO F

5-18 DEOU

Tree Representation for OVLY

The overlay structure defined by the input deck of the previous section can
be represented by the following tree:

//////
root segment

C

B

A

> SEGU

Loader Processing of OVLY

The processing done by the loader in connection with OVLY is diagrammed in
Figure 5-2. As in Figure 5-1, the loader inputs control cards and object
programs from the loader control file (R*) and object decks, produced as a
result of translation, from the object program file (B*). The loader searches
the secondary system standard library file (*L) and the system standard library
(L*). In addition, this example illustrates the construction of load modules on
the program link file (H*).

5-19 DEOU

Loader control file
(’R*')

Object program file
(' B*')

DKEND

OBJECT
object program C
DKEND

OBJECT
object program X
DKEND

OBJECT
object program A
DKEND

OBJECT
object program B
DKEND

OBJECT
object program Z
DKEND

OBJECT
object program Y
DKEND

OBJECT

$ OPTION PL1

$ SOURCE (A:PROCEDURE) .

$ SOURCE (B:PROCEDURE) ’

$ SOURCE (C:PROCEDURE)

$ ENTRY A

$ LINK SEG1

$ SOURCE (X:PROCEDURE)

$ LINK SEG2

$ SOURCE (Z:PROCEDURE)

$ LINK SEG3/SEG2

$ SOURCE (V:PROCEDURE)

$ LINK SEGU,SEG1

$ SOURCE (Y:PROCEDURE)

$ EXECUTE

Figure 5-2. Loader Processing of Overlays

5-20 DEOU

SECTION VI

EXTERNAL FILES

This section describes the basic concepts of file processing: organization/
access, and transmission. The device assignment control cards and the
requirements of the different devices are also included.

FlLE ORGANIZATION

GCOS PL/I allows the following four types of file organization:

CONSECUTIVE
INTERACTIVE
INDEXED*^ .
REGIONAL

In CONSECUTIVE and INTERACTIVE organization, records are retrieved in the order
in which they were written; in INDEXED and REGIONAL organization, records are
retrieved by means of a key. The four types of organization are described in
detail in the following sections of the manual. For each type of organization,
the data transmission statements that can be used are given and the method of
attachment to external files is described. Examples of file creation and access
are included for each type of organization.

The organization can be specified at compile time by the ENVIRONMENT
attribute. If the organization is not given in the program, it can be specified
at execution time by a parameter on a control card. In the absence of
specification, CONSECUTIVE organization is assumed.

ACCESS MODE

Two types of access, sequential or direct, are available; however, the
organization of the file imposes some constraints on the type of access that can
be applied to that file. Table 6-1 summarizes the access mode that can be used
with each type of organization. The activities permitted for the organization
and access are also given.

6-1 DEOU

Table 6-1. Record-Oriented Access Methods

Organ i zat ion Access Acti vi ty

CONSECUTIVE SEQUENTIAL INPUT
OUTPUT
UPDATE

INTERACTIVE SEQUENTIAL INPUT
OUTPUT

INDEXED SEQUENTIAL INPUT
OUTPUT
UPDATE

DIRECT INPUT
UPDATE

REGIONAL SEQUENTIAL INPUT
OUTPUT
UPDATE

DIRECT INPUT
OUTPUT
UPDATE

As indicated in the table, CONSECUTIVE and INTERACTIVE files cannot be
accessed directly and an INDEXED file cannot be opened for DIRECT OUTPUT and
thus cannot be created directly. The motivation for these restrictions is given
in the detailed description of file organization later in this manual.

TRANSMISSION

PL/I uses two types of transmission: stream-oriented transmission and
record-oriented transmission. The PL/I reference manual contains a detailed
description of these two transmission methods.

Stream-Or iented Transmission

In stream-oriented transmission, the file is considered to be a continuous
stream of characters. However, the conceptual PL/I stream file is attached to
an external file that consists of a series of records; consequently, the record
size must be provided for stream files. If the LINESIZE option is given in the
OPEN statement of an output file, the record size is assumed to be the same as
the line size. Otherwise, the record size can be given at execution time on
control cards.

6-2 DE04

There are two PL/I statements for stream-oriented transmission, namely:

GET
PUT

Stream-oriented transmission can be used only with CONSECUTIVE and INTERACTIVE
files* The structure of INDEXED and REGIONAL files is predicated upon the
relationship between a key and a record.

Stream-oriented transmission can access either BCD or ASCII files. Unless
otherwise specified, the file is assumed to be BCD and is converted during
transmission to ASCII. Punch stream files are exceptions to this, however (see
"Device Requirements" in this section and "Descriptor Files" in the section on
"Consecutive and Interactive Organization").

Record-Oriented Transmission

In record-oriented transmission, the minimum unit to be processed is a
logical record. No data conversion takes place during transmission.

A file is considered to be a set of logical records. On OUTPUT, a WRITE,
REWRITE, or LOCATE statement causes the record to be transmitted to the external
file exactly as it is recorded internally. A READ statement causes the record
of the external file to be transmitted to memory. The logical records are
written on the external file after being blocked by the operating system. Since
the records are blocked, the execution of a data transmission statement does not
necessarily cause the record to be actually transmitted between memory and a
peripheral device. The execution of a CLOSE statement causes any records
retained in the blocking buffers to be transmitted to the device.

There are five
fol 1ows:

PL/I statements for record-oriented transmission, as

READ
WRITE
REWRITE
LOCATE
DELETE

The options that can be used in these statements depend upon the type of
organization and the method of access. The permissible data transmission
statements for each type of organization are given in the sections following.

RECORD STRUCTURE

PL/I handles the following record types:

FIXED
VARIABLE

FIXED records can be used with all types of file organization,
types can be used only with CONSECUTIVE files.

VARIABLE record

6-3 DEOU

FIXED Records

FIXED records are all of the same defined length. The size of the buffer
determines the number of records to be blocked. No record control word appears
in fixed length records.

VARIABLE Records

For VARIABLE records, a record control word appears at the beginning of
each logical record. VARIABLE records can be used only with files generated in
the binary mode. VARIABLE records can contain a record larger than the buffer
size. Such a record is called a part i t i oned record. When files with
partitioned records are handled, the PRTREC option must be requested on the
$ FFILE control card.

ATTACHMENT OF PL/I FILES TO EXTERNAL FILES

The PL/I file is a conceptual unit. When the OPEN statement for the file
is executed, the file is attached to an external file by the file code. The
file code is determined from the first two characters of the TITLE option. If
the TITLE option is not given, the first two characters of the file name are
used as the file code. Control cards with the identifying file code are used at
execution time to specify a device and to provide additional information about
the file.

A CONSECUTIVE file can be attached directly to a peripheral device, if all
the default assumptions apply to the file. To change default assumptions, a
$ FFILE control card or a descriptor file can be included. INDEXED and REGIONAL
files require a descriptor file and a $ USE control card for attachment. Figure
6-1 illustrates the attachment of files with different types of organization. A
description of the peripheral device assignment cards is given later in this
section. The descriptor file cards depend upon the organization of the file and
are, therefore, described separately under each organization type. Similarly,
the $ USE is described for INDEXED and REGIONAL files.

In Figure 6-1, the first file Fl is a CONSECUTIVE file with record-oriented
transmission. The file Fl is opened with a TITLE option Wl. The file code is
taken from the first two characters of the TITLE option, so the file code for Fl
in this example is Wl. All the default assumptions apply to this file;
therefore, it can be attached directly by the device assignment card $ TAPE Wl.
The second file, F2, is a CONSECUTIVE file with stream-oriented transmission. A
descriptor file is provided for this file to alter the default assumption about
record size. The third file, F3, is a REGIONAL file; therefore, the necessary
descriptor file and $ USE control card are provided in addition to the device
assignment card for a direct access device. The fourth file, F4, is an INDEXED
file; the necessary descriptor file, $ USE control card, and device assignment
cards for index and data file are provided. The fifth file, SYSIN, is a
standard file and needs no control cards.

DEOU

8

PL1

EXI
FILE ENV IRONMENTCCONS ECUT IVE);

FILE ENV IRONMENTCREG IONAL);

PROC
DCL
DCL
DCL
DCL
DCL

SNUMB
IDENT
OPTION
PL1

Fl RECORD
F2 STREAM
F3 RECORD
FU RECORD
SYSIN FILE;

OPEN FlLE(F1) TI TLE('Wl')
OPEN FlLE(F2) TITLEC1XI1)
OPEN FlLECF3) TITLEC1Y1')
OPEN FlLE(FU) TITLEC’Z1’)
OPEN FlLECSYSIN) INPUT;

INPUT;
OUTPUT;
DIRECT UPDATE;
KEYED SEQUENTIAL INPUT;

END;

USE
USE
EXECUTE

.RBUF1/2000/,

.XBUF1/3000/,
RBUF2/2/
XBUF2/2/

$ TAPE Wl,...

$ TAPE Al,...
$ PRMFL Bl, ...
$ FILE Cl,...
$ FILE C2, .. .

$ DATA XI
CSP DATA FC=A1
CSP RECORD CHARSZ=100

$ DATA Y1
RSP DATA FC = B1
RSP RECORD RECSZ=U0

$ DATA Z1
ISP 1 NDEX FC=C1,PAGESZ=320
ISP DATA FC=C2,PAGESZ=320
ISP RECORD RECSZ=20 -KEYOFF=0,KEYSZ = 12

$ ENDJOB

Figure 6-1. File Attachment

DEOU

Device Assignment Control Cards

Device assignment control cards specify the actual device to be used for
each file and define additional file information. This section briefly
describes seven of these device assignment cards. A more detailed description
of these and information about other file control cards is given in the Control
Cards Reference Manual.

Device assignment cards must (1) follow the control
activityz and (2) precede any data cards associated with

card that defines
the act i v i ty.

the

FlLE CONTROL CARD

The $ FILE control card allocates a file to a mass storage device. If the
device type is not given, the file is allocated to the fastest device type
available. The $ FILE control card has the following format:

fc,lud,access,device-1ist

where: fc

1 ud

is the 2-character alphanumeric file code identifying
the external file.

is the logical unit designator, a 2- or 3-character
symbol (followed by a disposition code) identifying
the file. The first character of the identifier is
alphanumeric and the remaining characters numeric.
The following disposition codes can be given:

R - Release
S - Save for subsequent activity
P - Purge

access indicates the number of links and the file type:
sequential (L) or random (R).

dev i ce-1 ist specifies a device type
allocation of mass storage,
be g i ven are:

preference for the
The device types that can

DSS167
DSS170
DSS180 k
DSS181 [
DSS190
DSS191 J
DSS270
MSU0310 >
MSU0U00)

(DSPK)

(MASS)

6-6 DE04

Consider, for example, the following $ FILE control card:

1 8 16

$ FILE AA,X1SZ2L,DSS167,DSS180

This card requests that the external file with file code AA be assigned to
DSS167 andz if that device is not available, to DSS180. The file is accessed
sequentially and occupies two links (2L). The file is to be saved (S) for a
subsequent activity.

PRMFL CONTROL CARD

The $ PRMFL
$ PRMFL card has

control card is used to access an existing permanent file,
the following format:

The

$ PRMFL fc,permit,type,fi1e-string

whe re:

permit

type

file-string

is the 2-character file code identifying the file.

is the allowable access, as follows:

R - Read
W -Write
A - Append
E or X - Execute
REC - Recovery

indicates sequential (L) or random (R).

is the file descriptor. It contains the catalog name,
password (if needed), and file name.

Consider, for example, the following $ PRMFL control card:

1 8 16

$ PRMFL H*,W,R,ALPHA/CW

This card requests the permanent file created by FILSYS on H*. The requested
access is append (A). The file is random (R), and the file string is ALPHA/CW.

TAPE CONTROL CARDS

These cards assign tape units. Three tape control cards are available:

$ TAPE7 assigns a seven-track tape unit.
$ TAPE9 assigns a nine-track tape unit.
$ TAPE meaning may be installation dependent.

Reference Manual.
See the Control Cards

6-7 DE04

The format of the tape control cards is as follows:

1 8________ 16

$ TAPE fc,lud,mri,serial,seq,fi1e-name
TAPE7
TAPE9

where: fc is the 2-character alphanumeric file code identifying
the file.

lud is the logical unit designator, a 2- or 3-character
symbol identifying the file and a disposition code. The
following disposition codes can be given:

S - Save
C - Continue
D - Dismount
R - Release
P - Purge

mri is the multireel indicator. Any nonblank character in
this field indicates a second tape is assigned to the
file.

serial is the tape serial number of the first reel of the file.

seq is the sequence number of the reel at which processing
beg ins.

file-name is a 1- to 12-character name given for external
identification of the file; this name is used to issue
mounting instructions to the operator.

SYSOUT CONTROL CARD

The $ SYSOUT control card assigns the file identified by the file code to
SYSOUT for online conversion. The $ SYSOUT control card has the following
forma t:

1______ 8________ 16 ______________________________________

$ SYSOUT fc

READ CONTROL CARD

The $ READ control card allocates the file identified by the file code to
the card reader. The $ READ control card has the following format:

1______ 8_________16

$ READ fc

6-8 DEOU

PRINT CONTROL CARD

The $ PRINT control card allocates the file identified by the file code to
the line printer. The $ PRINT control card has the following format:

$ PRINT fc

PUNCH CONTROL CARD

The $ PUNCH
the card punch.

control card allocates the file identified by the file code
The $ PUNCH control card has the following format:

to

1_______ §________ 16

PUNCH fc

Device Requi rements

Table 6-2 summarizes the device requirements of different devices and
indicates the type of organization that can be applied to that device. In
addition, the transmission method and mode for the device are given.

Table 6-2. Device Requirements

Dev i ce
Type

Allowable
Organ i zat ion

Transmi ss i on
Method Mode

reader
CONSECUTIVE stream-oriented or

record-oriented with
fixed length records

BCD (stream)
binary (record)

punch
CONSECUTIVE s t ream-or ien ted or

record-oriented with
fixed length records

BCD or IBMEL
(stream)
binary (record)

1 i ne
printer

CONSECUTIVE stream-oriented or
record-oriented with
fixed length records

BCD

magnet i c
tape

CONSECUTIVE record-o r i en ted
s t ream-or i en ted

ASCI 1
ASCI 1 or BCD

mass
s torage

CONSECUTIVE record-or i ented
s tream-ori ented

ASCI 1
ASCI 1 or BCD

1NDEXED record-or i ented binary

REGIONAL record-o r i en ted binary

6-9 DE04

SECTION VI I

CONSECUTIVE AND INTERACTIVE ORGANIZATION

This section describes the attachment of files with CONSECUTIVE and
INTERACTIVE organization. The general requirements for the attachment of a file
with CONSECUTIVE organization are followed by examples of the creation and
access of CONSECUTIVE stream files and record files. The special requirements
of INTERACTIVE files and an example of the creation and access of an INTERACTIVE
file concludes the section.

CONSECUTIVE ORGANIZATION

A CONSECUTIVE file can be accessed only in
written. For devices like the card reader, punch, and
only acceptable form of organization.

the order in which it was
line printer, this is the

A CONSECUTIVE file can be attached to an external file directly if all the
default assumptions apply. If a CONSECUTIVE file is attached to a direct access
device, the SEQUENTIAL file option must be specified. To alter the default
assumptions for a CONSECUTIVE file, the $ FFILE control card and/or a descriptor
file can be specified.

Attachment of a CONSECUTIVE File

To specify and attach a CONSECUTIVE file, the following requirements must
be met:

The file must be designated as CONSECUTIVE. The CONSECUTIVE keyword
can be specified in thp ENVIRONMENT attribute at compile time or a
descriptor file containing CSP cards can be supplied at execution
time. In the absence of the ENVIRONMENT attribute and a descriptor
file, CONSECUTIVE organization is assumed.

The file must be assigned to a peripheral device by a $ TAPE,
$ PRMFL, $ SYSOUT, $ READ, $ PUNCH or $ PRINT control card.

$ FILE,

To override the default assumptions about buffer size, number of
buffers, mode, or record type, the $ FFILE control card can be used.
The default assumptions are:

buffer size 320 words
number of buffers 1
record length variable
mode binary

7-1 DEOU

To override the default assumptions about record size, tabs, mode, and
rewinding, a descriptor file of CSP cards can be provided. The
default assumptions are given with the explanation of the descriptor
file, later in this section.

$ FFILE CONTROL CARD

For files with CONSECUTIVE organization, the file control block can be
created using the $ FFILE control card. The format of the $ FFILE control card
is as fol lows:

16

fc,option,FFILE

where: fc is the 2-character alphanumeric code identifying the file.

options describe the nonstandard properties of the file.

The options of interest to the PL/I programmer are given in the following

Option M.san.i..Qg

STDLBL A standard label is generated and checked

NSTDLB No label is generated.

NBUFFS/n The number of buffers to be used is n, (n = 1 or 2).

BUFSIZ/n The size of the buffer is n, where n is a decimal number
< 4095.

MODBCD or
MBCD

The recording mode is BCD.

MODMIX The recording mode is mixed (BCD and binary).

FlXLNG/n The file contains fixed length records of length n, where n
1 4095.

PRTREC The file contains partitioned records.

7-2 DE04

DESCRIPTOR FILE FOR A CONSECUTIVE FILE

CONSECUTIVE files can be more fully specified by the use of a descriptor
file. The descriptor file contains information about the rewinding of the file,
the character set, format, and record size.

Two types of control cards are used to provide information about files with
CONSECUTIVE organization: the CSP DATA card and the CSP RECORD card. Columns
1-3 of these cards contain the code CSP to indicate that the cards apply to a
CONSECUTIVE file. The format of the CSP DATA card is as follows:

1_______ 8________ 16

CSP DATA FC=fc,option,...

where: fc is the 2-character alphanumeric code identifying the file.

option provides additional information.

The options that can be used on a CSP DATA card are given in the following list:

Option

OLEAVE
LEAVE
LOCK
ASCI I

BCD

Mean i ng

Open file without rewinding.
Close file without rewinding.
Lock file.
File consists of ASCII
characters.
Punch stream file consists
of BCD.

TAB

NTAB
INTERACTIVE

Set tabs at specified
columns, i.e., TAB(1,15,19)
Print data continuously
File is INTERACTIVE.

Defau1t

Rewi nd
Rewi nd
Do not
Stream

on opening.
on closing.

file.
i s BCD.

Punch stream file as
IBMEL (see appendix on
’’Character Conversion
Tables”).
TABU,11,21,...131)

TAB(1, 11, 21, . . . 131)
File is CONSECUTIVE.

The CSP ETC control card can be used to continue the CSP DATA card.

The CSP RECORD control card has the following format:

1______ 8________ 16_______________________________________

CSP RECORD option

where: option indicates the size of the record, as follows:

RECSZ=n The logical record contains a maximum of n words.

CHARSZ=n The logical record contains a maximum of n
characters.

7-3 DEOU

EXAMPLE OF CONSECUTIVE FILE ATTACHMENT

The following fragment illustrates the attachment of a file with
CONSECUTIVE organization.

16

$
$
$
$

SNUMB
IDENT
OPTION PL1
PL1

EXI: PROC;

OPEN FILE(Fl) OUTPUT TITLE(’Xl’) STREAM;

$ FFILE Al,BUFS1Z/400,NBUFFS/2
$ TAPE Al,AID
$ DATA XI
CSP DATA FC = A1
CSP RECORD CHARSZ=100

$ ENDJOB

The TITLE option in the OPEN statement specifies the file code XI.
file is included following the $ DATA control card with the file
descriptor file specifies that the file code is Al and that the
records of the file is 100 characters. A $ FFILE control card
alter the default assumptions about the number of buffers and the

A descr i ptor
code XI. The
size of the

is included to
buffer size.

Strearn-Oriented Transmission

Stream-oriented transmission can be applied to files with CONSECUTIVE
organization. Although a stream file is a continuous sequence of characters, it
is attached to an external file that consists of a series of records.. The
record size of the external file is specified either by the LINESIZE option in
the OPEN statement (for an output file) or directly on a CSP card.

EXAMPLES OF STREAM FILE ACCESS

Figure
the system
attached to

7-1 illustrates the creation of a stream file. Data is. taken from
input file and placed in the stream fi le MASTER. The file MASTER is
an external tape file with records 80 characters long.

Figure 7-2 illustrates stream file access. The file MASTER created.in the
previous figure is opened, and those entries belonging to the engineering
department are printed on the system output file.

DE04

$ SNUMB
$ IDENT
$ OPTION PL1
$ PL1

SFC: PROC OPT IONS(MA IN);
DCL MASTER STREAM FILE ENV IRONMENTCCONS ECUT IVE);
DCL SYS IN FlLE;
DCL 01 DIRECTORY,

02 PLANT CHARC16),
02 DEPARTMENT CHARC16),
02 SECTION CHARC16),
02 NAME,

03 LAST CHARC16),
03 FIRST CHARC16);

ON ENDFILE(SYSIN) GOTO EXIT;
OPEN FILE(MASTER) OUTPUT LINESIZEC80) TITLE("MF");

INSF: GET LIST(PLANT,DEPARTMENT,SECT I ON,LAST,FlRST);
PUT FILE(MASTER) LIST(DI RECTORY);
GOTO INSF;

EXIT: CLOSE FlLE(MASTER);
END;

$ EXECUTE
$ LIMITS 10,U0K,-2K
$ TAPE SC,X1D
$ DATA I *
CLEVELAND ENGINEERING 33B
CLEVELAND PURCHASING 2UC
CLEVELAND PURCHASING 2UD
PHILADELPHIA PLANNING 2 24

JONES WALTER
SMITH HENRY
MARTIN JOSEPH
FRANKLIN ROBERT

PHILADELPHIA ENGINEERING 335 GEORGE WALTER
WASHINGTON MARKETING AA45 JENSON THOMAS
PHILADELPHIA ENGINEERING 336 SMITH CLYDE
ALBANY PURCHASING XX22156 BURR ARTHUR
ALBANY ENGINEERING XX223U57 HAMILTON NATHAN
$ DATA MF
CSP DATA FC=SC
CSP RECORD CHARSZ=80
$ ENDJOB
* * * EO F

Figure 7-1. CONSECUTIVE Stream File Creation

7-5 DEOU

$ SNUMB
$ IDENT
$ OPTION PL1
$ PL1

SFA: PROC OPT IONS(MAIN);
DCL MASTER STREAM FILE ENV IRONMENT(CONS ECUT IVE);
DCL SYSPRINT FlLE;
DCL 01 DIRECTORY,

02 PLANT CHARC16),
02 DEPARTMENT CHAR(16),
02 SECTION CHAR(16),
02 NAME,

03 LAST CHAR(16),
03 FIRST CHARC16),

ON ENDFILE(MASTER) GOTO EXIT;
OPEN FILE(MASTER) INPUT;

LOOP: GET FILE(MASTER) LIST(DI RECTORY);
IF DEPARTMENT = "ENGINEERING"

THEN PUT SKIP LIST(DI RECTORY);
GOTO LOOP;

EXIT: CLOSE FILE(MASTER);
END;

$ EXECUTE
$ LIMITS 10,AOK,-2K,20000
$ TAPE SA,X1D
$ DATA MA
CSP DATA FC=SA
CSP RECORD CHARSZ=80
$ ENDJOB
* * * EO F

Figure 7-2. CONSECUTIVE Stream File Access

7-6 DEOU

Record-Oriented Transmission

Records of a CONSECUTIVE file have no key and are retrieved in the order in
which they are written. A CONSECUTIVE file is created by the execution of a
sequence of WRITE statements with the SEQUENTIAL OUTPUT attribute. Once the
file is created, it can be accessed by READ statements with the SEQUENTIAL INPUT
or SEQUENTIAL UPDATE attributes. The REWRITE statement cannot be used for a
file with CONSECUTIVE organization.

DATA TRANSMISSION STATEMENTS

The data transmission statements
CONSECUTIVE RECORD file are given
alternative forms, each written on a
indicate a construct that is optional.

that can be used to create and access a
in Table 7-1. Braces are used to group
separate line. Brackets are used to

Table 7-1. Data Transmission Statements for CONSECUTIVE RECORD Files

SEQUENTIAL OUTPUT

WRITE FILE(file-name) FR0M(variab1e-name);

LOCATE based-var FILE(fi1e-name SET(pointer-var) ;

SEQUENTIAL INPUT or SEQUENTIAL UPDATE

< INTO(variab1e-name)>
READ FILECfile-name) < SET(pointer-var)) ;

I IGNORE(expression) J

EXAMPLES OF RECORD FILE ACCESS

Figure 7-3 illustrates the creation of a CONSECUTIVE RECORD file and Figure
7-4 illustrates the access of the file just created.

7-7 DE04

$
$
$
$
$

SNUMB
IDENT
USERID
OPTION
PL1

SMCNAME$PASSWORD
PL1
LIST

CFC: PROC OPT IONSCMAIN);
DCL DISC RECORD SEQUENTIAL FILE ENV IRONMENTCCONS ECUT IVE);
DCL SYSIN FlLE;
DCL 01 IMAGE,

NAME,
03 LAST
03 FIRST

CHAR(30)
CHAR(30)
CHARC30)
CHAR(26)
CHAR(U);

02
02
02

CITY
STATE
CODE

ON ENDFILE(SYSIN) GOTO EXIT;
OPEN FlLE(DISC) OUTPUT;

LOOP: GET LIST(LAST,FIRST,CITY,STATE,CODE);
WRITE FlLE(DISC) FROM(IMAGE);
GOTO LOOP;

EXIT: CLOSE FlLE(DISC);
END;

$ EXECUTE
$ LIMITS 10,20K,-2K
$ PRMFL DF,W,S,DATA/BANK
$ DATA DI —7}
CSP DATA FC=DF-
CSP RECORD RECSZ=30
$ DATA I *
JONES ROBERT PHILADELPHIA PENNSYLVANIA AA
SMITH HENRY WAKEFIELD OHIO AB
SMITH ROBERT STONEHAM CALIFORNIA AA
SMITH MARY STONEHAM CALIFORNIA BA
SMITH CHARLES RANDOLPH MARYLAND AA
SMITH MARTIN SHARON WASHINGTON BA
SMITH CHARLES NORWOOD FLORIDA BA
$ ENDJOB
** * EOF

Figure 7-3. CONSECUTIVE RECORD File Creation

7-8 DEOU

16

CFA:

$ SNUMB
$ IDENT
$ USERID SMCNAME$PASSWORD
$ OPTION PL1
$ PL1 LIST

LOOP:

EXIT:

PROC OPT IONS(MAIN);
DCL (DISC,ATAPE) RECORD SEQUENTIAL FILE ENV I RONMENK CONS ECUT I VE);
DCL 01 IMAGE,

02 NAME,
03 LAST CHAR(30),
03 FIRST CHAR(30),

02 CITY CHAR(30),
02 STATE CHARC26),
02 CODE CHAR(4);

ON ENDFILE(DISC) GOTO EXIT;
OPEN FILE(DISC) INPUT;
OPEN FILE(ATAPE) OUTPUT;
READ FlLE(DISC) INTO(IMAGE);
IF CODE = "AA" THEN WRITE FILE(ATAPE) FROM(IMAGE);
GOTO LOOP;
CLOSE FlLE(DISC);
CLOSE FILE(ATAPE);
END;

$
$
$
$
$
$
CSP
CSP
$
CSP

EXECUTE
LIMITS 10, 20K,-2K
TAPE TF,X1S
FFI LE TF,NBUFFS/2, BUFSIZ/6U0
PRMFL DF,R,S,DATA/BANK
DATA DI
DATA FC=DF
RECORD RECSZ=30
DATA AT
DATA FC = TF

CSP RECORD RECSZ=30
$ ENDJOB
* * * EO F

Figure 7-4. CONSECUTIVE RECORD File Access

INTERACTIVE ORGANIZATION

To communicate with a remote terminal in the DIRECT PROGRAM ACCESS mode, a
stream file with INTERACTIVE organization is used.

Attachment of an INTERACTIVE File

To specify and attach a file with INTERACTIVE organization, the following
requirements must be met:

The file must be designated as INTERACTIVE. The INTERACTIVE keyword
can be specified in the ENVIRONMENT attribute at compile time or the
INTERACTIVE attribute can be specified on the CSP DATA card at
execution time.

A $ USE .RTYP control card must be included before the $ EXECUTE
control card to cause the loading of the proper File and Record
Control routine for accessing the terminal.

7-9 DEOU

A $ DAC control card must
capability between a remote

be included
terminal and a

to provide direct access
program in execution.

The $ DAC control card contains the file code and a single character that
is to be appended to SNUMB identifier to provide an inquiry name.

Example of INTERACTIVE Files

Figure 7-5 gives a program fragment
INTERACTIVE files. The inquiry name for

illustrating the attachment
this example is ’123451 1 .

two

1 8 16 _________________________ ___

$ SNUMB 123 45
$ 1 DENT
$ OPTION PL1
$ PL1

1 FAC: PROC;
DCL DI STREAM FILE ENV 1RONMENT(1NTERACT1VE);
DCL D2 STREAM FILE ENV 1RONMENT(1NTERACT1VE);

OPEN FlLE(D1)
OPEN FlLE(D2)

I NPUT TITLECAB");
OUTPUT LINESIZE(120);

GET Fl LE(D1) LIST(X);

PUT FlLE(D2) LIST(Y);

END;

$ USE . RTYP
$ EXECUTE
$ DAC Xlz 1
$ DAC X2Z 1
$ DATA AB
CSP DATA FC=X1ZINTERACTIVE
CSP RECORD RECSZ=10
$ DATA D2
CSP DATA FC=X2ZINTERACTIVE
CSP RECORD CHARSZ=120
$ ENDJOB
***EOF

Figure 7-5. Attachment of INTERACTIVE Files

7-10 DEOU

SECTION VIII

INDEXED ORGANIZATION

This section describes the access and structure of files with INDEXED
organization. The method of attachment for an INDEXED file and the utilization
report produced as a result of using an INDEXED file are given. Examples of the
creation and access of an INDEXED file are included.

INDEXED files are processed by the
GCOS. For additional information on
Sequential Processor manual.

Index Sequential
INDEXED files,

Processor (ISP) in
refer to the Indexed

INDEXED FILE ACCESS

A file with INDEXED organization consists of a series of records, each
containing an imbedded key. The imbedded key is a character string within the
record. The length of the imbedded key and the position of the key within the
record are specified on a control card at execution time. The maximum length
for a key is 32 characters.

File Creation

Records in an INDEXED file are arranged in the order defined by the
imbedded keys. To create an INDEXED file, the file is opened for SEQUENTIAL
OUTPUT and records are written so that the imbedded keys are in order with
respect to the ASCII collation sequence. The execution of a WRITE statement
during file creation for a record whose imbedded key is lower in the ASCII
collation sequence than the key of a previously written record causes the KEY
condition to be raised.

Once a file is created, additional records can be inserted. The file is
opened for UPDATE and records are logically inserted in the file according to
the position of its imbedded key in the ASCII collation sequence with respect to
the keys of the other records of the file. The structure of the file is
described later in this section.

File Access

An INDEXED file can be accessed either sequentially or directly.
Sequential processing accesses records in the order defined by the imbedded
keys. Direct processing accesses a record by matching the source key from the
data transmission statement to an imbedded key within the file.

8-1 DEO l+

SEQUENTIAL ACCESS OF AN INDEXED FILE

When an INDEXED file is accessed sequentially, the source key is not
required. Records are accessed in the order of the imbedded keys. If no
records have been added to the file since its creation, the order of the
imbedded keys is the same as the order in which the records were written.
However, if a record has been added with an imbedded key lower in the ASCII
collation sequence than the key of the last record of the file, the order of the
imbedded keys is different from the order in which the records were written.

For example, if a file is created with records having keys:

A, B, D, F, I, P, T, X

and then an additional record is added with the key G, the order of the imbedded
keys is:

A, B, D, F, G, I, P, T, X

Sequential processing of the file retrieves the records in the above order.

In SEQUENTIAL UPDATE, the execution of a DELETE statement without the KEY
option causes the most recently retrieved record to be eliminated. If the FROM
option does not appear in a REWRITE statement, the execution of that statement
causes the record just retrieved to be replaced.

DIRECT ACCESS OF AN INDEXED FILE

All di rec t access
or the KEYFROM option.

data transmission statements must include either the
Files can be opened either for INPUT or UPDATE.

KEY

In direct mode, records can be read, replaced, eliminated, or added. The
source key must be specified on the data transmission statement. The source key
is compared against the imbedded keys of the file, using the rules that govern
character string comparison. If no match is found for the source key specified
with a READ, REWRITE or DELETE statement, the KEY condition is raised. If a
match is found for the source key specified with a WRITE statement, the KEY
condition is also raised, indicating that the key of the record to be added is
already contained in the file.

Data Transmission Statements for INDEXED Files

Table 8-1
INDEXED files.

lists the data transmission statements that can be used with

Braces are used to group alternative forms, each written on a separate
line. Brackets are used to indicate a construct that is optional.

8-2 DE04

Table 8-1. Data Transmission Statements for INDEXED Files

SEQUENTIAL OUTPUT

WRITE FILE(fi1e-name) FROMCvariable-name) [KEYFROMCexpression)] ;

LOCATE based-var FILE(fi1e-name)[KEYFROMCexpression)] [SETCpointer-var)];

SEQUENTIAL INPUT

READ FlLECfile-name)

READ FlLECfile-name)

INTOCvariable-name) KEY(express i on)

IGNORE(expression);

SEQUENTIAL UPDATE

READ FILECfi1e-name)

READ FILECfi1e-name) IGNORE(expression) ;

REWRITE FILECfi1e-name)[FROMCvariabl e-name)J ;

DELETE FILECfi1e-name) ;

DIRECT INPUT

READ FILECfi1e-name) INTOCvariable-name) KEYC express ion) ;

DIRECT UPDATE

READ FILECfi1e-name)

REWRITE FlLECfile-name)

WRITE FILE(fi1e-name)

DELETE FlLECfile-name)

INTOCvariable-name)

FROMC var i ab1e-name)

FROMC var i able-name)

KEYCexpression) ;

KEYCexpression) ;

KEYCexpression) ;

KEYFROMCexpression) ;

8-3 DE04

STRUCTURE OF AN INDEXED FiLE

An INDEXED file consists of two separate files, namely: a data f i1e,
containing the written records of the INDEXED file, and an index file,
containing information about the position of the keys within the data file, for
efficient access. These two files are separate and can be stored on separate
direct access devices.

.Pafi.es

The data file and the index file, like all direct access files, are divided
into pages. A page is the unit of information passed between random access
storage and main memory during processing. The page size and the percentage of
the page to be filled can be specified on control cards at execution time.

Relationship Between the Data File and the Index File

For every page in the data file,
a f i ne i ndex. When the fine index
The coarse index portion of the index
the fine index portion.

an entry exists in the index file, called
exceeds one page, a coarse i ndex is buiIt.
file contains an entry for every page in

When an INDEXED file is accessed directly, the
efficiently locate the desired record in the data file, as

i ndex file is used to
fol lows:

The source key
entries in the
i ndex.

The source key
page to obtain

The source key
page to obtain

from the data transmission
coarse index to obtain the

statement is compared to the
page number in the fine

is compared to the entries on the designated fine index
the page number in the data file.

is compared to the keys
the desired record.

on the designated data file

Structure of the Data File

The data file begins with a record containing 62 words of control
information and concludes with an end-of-file. The data file contains the
records written; each record contains, in addition to the key and data, a record
control word and a pointer. The record control word specifies the record
length, record type, and deletion status. The pointer specifies the next
logical record according to the order of the imbedded keys.

Records can be variable in length; but the key must be located at the same
position in every record. The pages of the data file are filled with records.
If there is not sufficient space on a page to accommodate an entire record, the
space is left unused and a new page is started.

The pages of the data file that are not filled with
creation are called overflow pages. These overflow
records added after file creation.

records during
pages can be used for

DE04

Pafi.es

Space for the addition of records can be reserved uniformly throughout the
file by specifying a percentage fill figure at execution time. The percentage
fill parameter is described later in this section in connection with the
descriptor file. The uniform distribution of space throughout the file is
useful if records with keys distributed throughout the file are to be added
after file creat i on.

Figure 8-1 illustrates the structure of the data file. Record #3 was added
to the file after file creation and is, therefore, stored physically on an
overflow page and linked into its logical position within the file. If space
had been reserved uniformly throughout the file, this record could possibly have
been located physically on the page to which it logically belongs.

8-5 DE04

page 1
OVERFLOW AREA

page n

Data page control word Data page control word
Data utilization record
control word

record control word

utili zat ion
record (62 words) record #3

link to #4
record control word • • •

record #1

link to #2
record control word

record #2

link to #3
record control word

record #4

link to #5

unused space

page 2

Data page control word
record control word

record #5

link to #6

Figure 8-1. Structure of the Data File

8-6 DE04

Structure of the Index File

The index file begins with a record containing 64 words of control
information and concludes with an end-of-file. The fine index is created in
ascend i ng order from the beginning of the file. When the fine index portion
exceeds one page, the coarse index is created in descend i ng order from the end
of the file. If the fine index and the coarse index overlap, an error message
is produced and the program is aborted. Guidelines for determining the size of
the index file are given later in this section. The size of the index file is
related to the page size of the data file; the larger the page size in the data
file, the fewer fine index entries in the index file.

Figure 8-2 illustrates the structure of the index file.

8-7 DE04

index utilization record

fine i ndex (page 1)

page 1

fine index (page 2) page 2

fine i ndex (page 3) page 3

coarse index (page 3)

coarse index (page 2)

coarse index (page 1)

page n-2

page n-1

page n

n = number of pages allocated to the index file.

Figure 8-2. Structure of the Index File

8-8 DE04

ATTACHMENT OF AN INDEXED FILE

To specify and attach an INDEXED file the following
met:

requirements must be

The file must be designated as an INDEXED file,
can be specified in the ENVIRONMENT attribute
no ENVIRONMENT attribute is given, a descriptor
cards can be supplied at execution time.

The INDEXED keyword
at compile time or, if
file con ta i n i ng ISP

A descriptor file must be provided to specify the file codes of the
data file and index file and the record and key sizes.

A device assignment control card for a direct access device must be
provided for both the data and the index files.

The size of the work region to be reserved for INDEXED files must be
specified on an appropriate $ USE control card.

Descriptor File for an INDEXED File

Each INDEXED file must have an associated descriptor file that specifies
the file code of the data file and the file code of the index file. In
addition, the maximum record size and key size must be given.

Optionally, the page size and percentage fill for both the data file and
the index file can be specified. In the absence of specification, the page size
is assumed to be 320 words with 100% fill.

If the key is not located at the beginning of the record, the key offset
must be specified. Records can be variable in length, but the offset of the key
within the record must be fixed.

The format of the cards in the descriptor file is now given. A discussion
of the parameters and some guidelines for their selection follow the card format
descr i pt ion.

CONTROL CARDS FOR INDEXED FILES

Three types of control cards are used to provide additional information for
files with INDEXED organization: the ISP INDEX card, the ISP DATA card, and the
ISP RECORD card.

The ISP INDEX card has the following format:

1_______8________ 16____________________________________

ISP INDEX FC = fc[, PAGESZ=I PS]

where: fc is the file code of the index file.
IPS is the page size in words.

8-9 DE04

The ISP DATA card

ISP DATA FC = fc[/PAGESZ = DPS] [,PAGEFIL=PF]

where: fc is
DPS is
PF is

the file code of the data file.
the page size in words.
the percent of the page to be used.

The ISP RECORD card has the following format:

1_______ 8________ 16____________________________________

ISP RECORD RECSZ=RS,KEYSZ=KS[,KEYOFF=KF]

where: RS is the size of the fixed length records in words.
KS is the size of the key in BCD character units.
KF is the offset of the key in BCD character units.

An ISP ETC descriptor card can be used to continue any of these cards.

Page Size

Many factors enter into the determination of page size. Since a Jink is
divided into pages, the page size* should be chosen to divide evenly into the
link size (3840 words). If the file is composed of fixed length records, the
page size should provide for minimum unused space by being the closest number to
a multiple of the record size (including the two record control words) plus the
page control word.

However, since the page buffers are all the same size for INDEXED fi1es,
all INDEXED files should have the same page size for most efficient utilization
of these buffers. Moreover, the page size can be altered from run to run to
obtain better efficiency. Studies have shown that for random access small page
sizes are most efficient and for sequential access larger pages are most
eff i c i ent.

Percent

The percent of the page to be used can also be altered from run to run. A
percent less than 100 causes space to be reserved throughout the file.
Subsequent adjustment of the percent fill allows records to be added in the
previously unused space. Thus, if sufficient unused space is available on a
page, records added to the file after its creation can be physically placed on
the page to which they logically belong.

■’■For further background information, see Section IV of the F i „l„g, Management
Superv i sor manual.

8-10 DEOU

Record and Key Parameters

The record size (RS) of the largest record in the file must be given.
Since a maximum of four ASCII characters can be contained in a word, the number
of words per record is calculated by dividing the total number of ASCII
characters in the record by four.

RS = CEIL
number~of-ASCIl-characters

whe re: CEIL is the PL/I truncating function that returns
integer greater than or equal to its argument.

the sma11es t

The key size (KS) is determined by multiplying the
characters in the key by a factor that expresses its length in
units.

numbe r of ASCI I
BCD character

_9
KS = number-of-ASCI I-characters-in-key * 6

The offset is determined by multiplying the number of ASCII characters
before the key by the same factor. If the offset is not given, an offset of
zero is assumed.

Memory Reservation

Space must be provided for file tables and page buffers by a $ USE control
card, as foilows:

1 8 16

$ USE .XBUFl/n/,.XBUF2/2/

where: n is the number of words required for the INDEXED files of a
program.

Each INDEXED file used requires a 160-word file table allocation. The page
buffers are shared among all the INDEXED files of the program. An estimate of
the number of words required can be obtained as follows:

n = 8 + 160 * NF + MAX(1016,(MPS+4)*NPB)

where: NF is the number of INDEXED files which are open.
MPS is the maximum page size for all the INDEXED files.
NPB is the number of page buffers needed. ISP requires that it be

at least 3 .
MAX is the PL/I built-in function.

PAGE BUFFERS

A page buffer is an area of memory used to hold a page during processing.
The number of page buffers allocated for a file affects the efficiency of
operation. For example, the efficiency of direct access of an INDEXED file can
be improved if there are sufficient page buffers to allow the fine index and the
coarse index to be retained in memory.

8-11 DE04

The Utilization Report produced as a result of the execution of a program
using INDEXED files can be used to determine the change in efficiency
accomplished by the change in the number of page buffers allocated. The ratio
of logical to physical reads and writes provides a good indication of the
improvement. The Utilization Report for INDEXED files is described later in
th i s sect ion.

Calculation of File Size

The size of the data file and the index file can be calculated by the
following methods. The number of links required for the data file and index
file can be specified on the device assignment card for each file. A sample
calculation of file size is given in the example following this section.

The PL/I truncating functions FLOOR and CEIL are used in these formulas.
These functions discard the fractional part of their arguments to produce an
integer, as follows:

FLOOR(R) is the largest integer <_ R

CEIL(R) is the smallest integer >_ R

CALCULATION OF DATA FILE SIZE

The formulas given here for calculation of the data file
following variables whose values are furnished by the user.

size use the

NR = total number of records in the file
RS = record size (in words)
DPS = data page size (in words)
PF = percent fill

Values for the following variables are calculated using the given

Nl = number of records that can be stored on the first page
N2 = number of records that can be stored on each page after the
NDP = total number of data pages required
NDL = number of 3840-word links required for the data file

Nl = FLOOR
FLOOR [DPS * PF/lOO] - 65

RS + 2

formu1 as.

first

If NR + 1 <. Nl, only one data page is required.

N2 = FLOOR
FLOOR EPPS * PF/lOO] - 1

RS + 2

NDP = CEIL

NDL = CEIL

NR - Nl
N2

NDP * DPS
38U0

Otherwi se,

8-12 DEOU

CALCULATION OF INDEX FILE SIZE

The size of the index file is calculated using the
whose values are furnished by the user.

NDP = number of data pages (from previous calculation)
IPS = index page size (in words)
KS = key size (in characters)
KF = key offset (in characters)

The values to be calculated are as follows:

following variables

I EW = size of an index entry (in words)
II = number of index entries stored on the first index page
12 = number of index entries stored on each page after the first
NFP = number of fine index pages required
NCP = number of coarse index pages required
NIP = total number of index pages required
NIL = number of 3840-word links required for the index file

I EW = FLOOR
KF + KS - 1

4 FLOOR

FLOOR
I PS

I EW

KF
4

If NDP <_ 11, then only one index page

12 =

NFP =

FLOOR
IPS - 2

I EW

NDP -11-1
12

s requ i red. Otherwi se,

Since NFP > 1, one or more coarse index pages are required.

NCP = FLOOR
NFP + I 2 - 1

I 2

NIP = NFP + NCP

NIL = CEIL
IPS * NIP

3840

8-13 DE04

Example of INDEXED File Attachme_n

The following fragment illustrates the attachment of a file with

organ i zat i on:

I FA:

OPEN F1LE(Z1) SEQUENTIAL OUTPUT;

WRITE FILE(Zl) FROM(TABLE) KEYFROM(NAME);

END;

.XBUF1/1132/,.XBUF2/2/

ENDJOB
* * * EO F

SNUMB
IDENT
OPTION

CODE
NAME
CONT
LAST

DATA
I NDEX
DATA
RECORD

PROC;
DCL 01

USE
EXECUTE

Cl,AIS,1R,MSU0U00
C2,A2S,1R,MSU0310

TABLE
02
02
02
02

Z1
FC=C1, PAGESZ=320
FC = C2Z PAGESZ=320,PAGEF1L = 80
RECSZ=20,KEYSZ=30,KEYOFF=6

PIC "9999"
CHARC20),
CHAR(50),
CHAR(6);

DESCRIPTOR FILE CALCULATIONS

In this example, a page size
Therefore, only 256 words are used for
on each page are reserved and can be
the file.

of 320 words with 80% fill Js
record storage. The remaining
used later for the addition of

s pec i f i ed.
6U words

records to

The parameters
record TABLE. The
of ASCI I characters
of words required,

of the
record
i n the

ISP RECORD card are determined
size in words (RS) is determined
record TABLE and dividing by four

by examining the
by adding the number

to get the number

as foilows:

RS

20

8-1U
DEOU

The key size in BCD character units (KS) is determined by taking the number of
ASCI I characters in the key and multiplying by a factor that expresses the
length in BCD character units. Since a BCD character requires 6 bits and an
ASCII character requires 9 bits, the calculation is:

KS = no. of ASCI I chars i n key *
b i
bi

ts-per-ASCII-char
ts-per-BCD-char

KS = 20 30

The offset in BCD character units (KF) is determined by multiplying by the same
factor, the number of ASCII characters by which the key is offset from the start
of the record, as follows:

9.
KF 6

KF = no.-of-ASCI I-chars-
before-key

bits-per-ASCll-char
bi ts-per-BCD-char

MEMORY RESERVATION CALCULATION

The work region allocation is calculated, as follows:

n = 160 * 1 + (320 + 4) * 3 = 1132

The $ USE control card,
INDEXED files.

in this example, requests 1132 words for the use of

FlLE SIZE CALCULATION

Assuming the data file consists of 25 records, the size of the data file is
calculated from the page size and percent fill as follows:

N1 = FLOOR

= FLOOR
= 8

FLOOR [320 * , 80] - 65
20 + 2

256 - 65
22

N2 = FLOOR
= 11

NDP = CEIL
= 2 + 1
= 3

NDL = CEIL
= 1

256 - 1
22

25-8
11 1

3 * 320
3840

One link is, therefore,
card, as fo1 lows:

specified for the data file on the device assignment

FILE C2,A2S,1R,MSUO31O

8-15 DE04

The size of
formulas. The
the data file pag<

The size of

the index file is calculated from the following set of
size of the index file page is taken to be the same as that of
e - 320 words.

the index file is calculated as follows:

+ 20 - 1~| F1
1EW = FLOOR

= 5-1
= 6

11 = FLOOR
= U2

S i nee NDP < 1lz o

NIL = CEIL
= 1

One link is, ther
card, as foilows:

$ FILE

U J - FLOOR |_ U J + 2
+ 2

~320 - 67
6

nly one index page is required. Therefore,

~320 * 1~
3840

efore, specified for the index file on the device assignment

C1,A1S,1R,MSUO31O

UTILIZATION REPORT

When a program using INDEXED files is executed,
prepared and upon completion of the job, the report is .
provides a record of the program’s file access and contai
be used to improve the efficiency with which the INDEXED

a uti1ization report i s
printed. This report
ns information that can
files are accessed.

The utilization report for
information about the data file,
attributes, and job attributes,
uti1ization report.

n INDEXED file has four columns containing
information about the index file, file
The following items are included in the

8-16 DEO^

LOGICAL READS

LOGICAL WRITES

PHYSICAL READS

PHYSICAL WRITES

This counter is incremented by one each time a
READ statement is executed.

This counter is incremented by one each time a
WRITE, REWRITE, or DELETE statement is executed.

This counter is incremented by one when a page is
transferred from the external device to a page
buffer.

This counter is incremented by one when a page is
transferred from a page buffer to the external
dev i ce.

PAGE SIZE

PAGES ALLOCATED

PAGES USED INITIALLY

OVERFLOW PAGES USED

TOTAL PAGES USED

COARSE PAGES

FINE PAGES

MAXIMUM RECORD SIZE

KEY SIZE

KEY OFFSET

COLLATING SEQUENCE

FILE INITIALIZED

FILE LAST UPDATED

DELETED RECORDS

OVERFLOW RECORDS

TOTAL RECORDS

BUFFER SIZE

NUMBER OF BUFFERS

FILE ACCESS

The number of words in a page.

The number of pages contained in the file.

The number of pages actually used at
initialization of the file.

The number of pages, used for the storage of
records, beyond the last page used at file
initialization.

The sum of PAGES USED INITIALLY and OVERFLOW PAGES
USED.

The number of index file pages
coarse index.

requ i red for the

The number of index file pages required
fine i ndex.

The number of words in the largest record.

for the

The number of characters in the key, expressed in
BCD character units.

The offset of the key from the beginning of the
record in BCD character units.

The collating sequence used for ordering keys.

Date and time of initialization of the file.

Date and time of the last update of the file.

The number of deleted logical records currently in
the file.

The number of records written on overflow pages.
This count includes active and deleted records.

The number of records currently in the file. This
count includes both active and deleted records.

The number of words in the buffer page. The size
of the buffer page is determined by the largest
page of all INDEXED files used.

The number of page buffers used by the program.

The type of file activity.

8-17 DEOL

EXAMPLES OF INDEXED FILE ACCESS

Figure 8-3 illustrates the creation of an INDEXED file. Data is taken from
the system input file. The INDEXED file TABLE is opened for sequential output
and records are written in the order of the key NAME. The utilization report
produced from the execution of the job is given in Figure 8-4.

The format of this utilization report is compressed for inclusion in the
manual, but the information is not changed. The utilization report shows t at
eight logical writes were performed, corresponding to the eight input 1 terns.
Since the page size was specified to be 320 words and one.link was requested for
the file, 12 pages are allocated for the file. The specification of the.buffer
allocation of 1780 words on the $ USE control card results in the allocation of
five buffers.

8-18 DEOU

16

$ SNUMB
$ IDENT
$ OPTION PL1
$ PL1 LIST

TABLE RECORD FILE KEYED ENV IRONMENT(I ND EX ED);

DCL

LOOP:

.XBUF1/1780/USE
EXECUTE
LIMITS 10,50K,-2K

DX, AIS, 1R, MSUOii 0 0, MSU0310
I X,A2S,1R,MSUO4OO
AA
FC=I X,PAGESZ=320
FC=DX,PAGESZ=320
RECSZ=16,KEYSZ=36,KEYOFF=30

PLANT
NUMBER
NAME
GROSSPAY
DEDUCTIONS

PROC OPTIONS(MAIN);
DCL
DCL

01 PAYROLL
02
02
02
02
02

CHARC12),
CHAR(8),
CHARC24),
PIC”ZZ,ZZZ,ZZZ",
PIC”77 777 777” •

ON ENDFILE(SYS IN) GOTO EXIT;
OPEN FILE(TABLE) OUTPUT SEQUENTIAL TITLECAA");
GET LI ST(PLANT,NUMBER,NAME, GROSS PAY, DEDUCT IONS)
WRITE FILE(TABLE) FROM(PAYROLL) KEYFROM(NAME);
GOTO LOOP;
CLOSE FlLE(TABLE);
END;

$ DATA
ISP INDEX
ISP DATA
ISP RECORD
$ DATA
CLEVELAND 25067 JONAS 36367 7500
CLEVELAND 25068 JONSON 25163 5635
CLEVELAND 25069 JUDD 14453 2336
WASHINGTON 34567 KLAUS 1 0
ALBANY 122269 MONTVALE 12263 2215
CLEVELAND 25070 MOST 24567 5432
CLEVELAND 3524 SMTH 44778 12343
PHILADELPHIA 222233 TAYLOR 55569 23454
$ ENDJOB
* * * EOF

Figure 8-3. INDEXED File Creation

8-19 DE04

INDEXED Sequential Processor Utilization Report

Data File DX

Logical Reads
Log i ca1 Writes
Physical Reads
Physical Writes
Page Size (Words)
Pages Al located
Pages Used Initial 1y
Overflow Pages Used
Total Pages Used

0
8
0
2

320
12

1
0
1

Index File IX

Physical Reads
Physical Wri tes
Page Size (Words)
Pages Al 1 oca ted
Coarse Pages
Fine Pages
Total Pages Used

0
1

320
12

0
1
1

File Attr i butes Job Attri butes

Maximum Record Size (Words) 16 Buffer Size (Words)
Key Size (Characters) 36 Number of Buffers
Key Offset (Characters) 30 File Access
Collating Sequence 6000
File Initialized 01/16/75 14.54
File Last Updated 01/16/75 14.54
Deleted Records 0
Overflow Records 0
Total Records 8

320
5

Build

Figure 8-4. Utilization Report for INDEXED File Creation

8-20 DE04

Figure 8-5 illustrates, the access of the INDEXED file just created.
Corrections to the spelling of two keys are taken from the system input file.
The records with the.correct1y spelled key are written in the file and the
records with the incorrectly spelled key are deleted from the file The
utilization report produced from the execution of this job is given in Figure
8-6 • &

The utilization report shows two 1og i ca1 reads corresponding to the two
records entered under the incorrectly spelled key, and four logical writes,
corresponding to the deletion of these two records and the addition of the two
records under the correctly spelled key. Since all the records are on the same
P^ge, only one phys i ca1 write and one ph ys i ca1 read are necessary.

1_______ 8________ 16

$ SNUMB
$ IDENT
$ OPTION PL1
$ PL1 LIST

IFA: PROC OPT IONS(MA IN);
DCL TABLE RECORD FILE KEYED ENV IRONMENT(INDEXED);
DCL SYSIN FlLE;
DCL (WRONGNAME,RlGHTNAME) CHAR(24) ALIGNED;
DCL 01 PAYROLL,

02 PLANT CHAR(12),
02 NUMBER CHAR(8),
02 NAME CHAR(24),
02 GROSSPAY pic"zz,zzz,zzz",
02 DEDUCTIONS PIC"ZZ,ZZZ,ZZZ";

ON ENDFJ LE(SYS IN) GOTO EXIT;
OPEN FILE(TABLE) UPDATE DIRECT TITLE("AA");

LOOP: GET LIST(WRONGNAME,RIGHTNAME);
READ FILE(TABLE) INT0(PAYROLL) KEY(WRONGNAME);
NAME = RIGHTNAME;
WRITE FILE(TABLE) FROM(PAYROLL) KEYFROMCR1GHTNAME);
DELETE FILE(TABLE) KEY(WRONGNAME);
GOTO LOOP;

JONAS JONES
SMTH SMITH
$ ENDJOB
* * * EO F

EXIT: CLOSE F
END;

1LE(TABLE);

$ USE .XBUFl/2000/,.XBUF2/2/
$ EXECUTE
$ LIMITS 10, 50K,-2K
$ FILE DX,AIS,1R,MSU0310,MSU0400
$ FILE 1X, A2S,1R,DSS270
$ DATA AA
ISP INDEX FC=IX,PAGESZ=320
ISP DATA FC=DX,PAGESZ=320
1 SP RECORD RECSZ=16,KEYSZ=36,KEYOFF=30
$ DATA 1 *

Figure 8-5. INDEXED File Access

8-21 DE04

INDEXED Sequential Processor Utilization Report

Data File DX Index File IX

Logi ca1 Reads
Logi cal Wr i tes
Phys i ca1 Reads
Phys i ca1 Wr i tes
Page Size (Words)
Pages Al located
Pages Used Initially
Overflow Pages Used
Total Pages Used

2 Phys i ca1 Reads 1
4 Phys i cal Wr i tes 0
1 Page Size (Words) 320
1 Pages Al located 12

320 Coarse Pages 0
12 Fine Pages 1

1
0
1

Total Pages Used 1

File Attributes Job Attributes

Maximum Record Size (Words) 16
Key Size (Characters) 36
Key Offset (Characters) 30
Collating Sequence 6000
File Initialized 01/16/75 14.54
File Last Updated 01/16/75 14.55
Deleted Records 2
Overflow Records 0
Total Records 10

Buffer Size (Words)
Number of Buffers
File Access

320
5

Update

Figure 8-6. Utilization Report for INDEXED File Access

8-22 DE04

SECTION IX

REGIONAL ORGANIZATION

This section describes the structure of files with REGIONAL organization.
The method of attachment for REGIONAL files and the uti1ization report produced
as a result of accessing a REGIONAL file are given. Finally, examples of the
creation and access of a REGIONAL file are included.

REGIONAL files are
the PL/I system.

processed by the Regional Sequent i a 1 Processor (RSP) in

REGIONAL FlLE ACCESS

A file with REGIONAL organization consists of a
corresponding to the fixed length logical records of the
can be assigned only to direct access devices.

number of regions,
file. REG IONAL files

A record in a REGIONAL file does not have an imbedded key; instead, the
source key on the data transmission statement indicates the region. Since the
regions of the file correspond one-to-one to the logical records of the file,
the source key specifies the position of the record within the file. The source
key is a character string consisting of a maximum of 32 characters representing
a positive integer value.

File C reat i on

A REGIONAL file can be generated either in sequential or direct mode. When
the REGIONAL file is generated sequentially, the source keys must be given in
ascending order if the KEYFROM option is specified on the data transmission
statement. When the values of the source keys skip some integers, the omitted
regions are filled with dummy records. For example, if source keys 1, 2, 4,
6, ... are specified, regions 3, 5, ... are filled with dummy records. When the
file is closed, any remaining records are filled with dummy records.

When the file is created directly, all regions are filled with dummy
records upon opening the file. Then the records are inserted in the regions
specified by the value of the source key on the data transmission statement.

A dLLmmy record contains an identifying code in the first word. The dummy
record code can be specified on a control card at execution time. If the dummy
record code is not specified, the octal number 1177000000000’ is used.

9-1 DE04

File Access

Once a
mode. Each
record or a

file is created, it can be accessed either in sequential, or direct
record retrieved should be checked to determine whether it is a data
dummy record.

SEQUENTIAL ACCESS

A SEQUENTIAL file can be opened with either the INPUT or UPDATE
The data transmission statement cannot contain the KEY option, but
option can be used; thus the file can have the KEYED attribute.

attribute,
the KEYTO

Records
dummy records

are
are

in the order of
sequent i a 11y.

ascending region number. Actual and

In SEQUENTIAL UPDATE, the execution of a REWRITE statement results in the
replacement of the record retrieved by the READ statement (wi th the SET option,
if the file has the UNBUFFERED attribute). The execution of a DELETE statement
causes the most recently retrieved record to be replaced by a dummy record.

DIRECT ACCESS

The data transmission statement for direct access must include the KEY
option to specify the region to be accessed. A new record is written in the
region corresponding to the key value by the execution of a WRITE statement.
The execution of a DELETE statement causes a dummy record to be written in the
spec i f i ed reg i on.

No record checks are made by the system to determine whether the record
being written over is an actual or dummy record. It. is the user’s
responsibility to maintain the integrity of the file by checking the record code
sys tema t i ca11y.

Data Transmission Statements for REGIONAL Files

Table 9-1 lists the data transmission statements that can be used with
REGIONAL files.

9-2 DE04

Table 9-1. Data Transmission Statements for REGIONAL Files

SEQUENTIAL OUTPUT

WRITE FILE(fi1e-name) FR0M(variab1e-name) [KEYFROMCexpression)] ;

LOCATE based-var FILE(fi1e-name)^KEYFROMCexpression] £ SET(pointer-var)] ;

SEQUENTIAL INPUT

READ FILE(fi1e-name)

READ FILE(fi1e-name)

SET(poi nter-var)

I NT0(va r i able-name) KEY(express i on)

KEYTO(char-strng-var)

I GNORE(express i on);

SEQUENTIAL UPDATE

READ FILE(fi1e-name)
KEY(express ion)INTOCvariable-name)

READ FILE(file-name) IGNORE(express ion);

REWRITE FILE(fi1e-name);

DELETE FlLE(file-name) ;

DIRECT OUTPUT

WRITE FILE(fi1e-name) FROM(variab1e-name) KEYFROMCexpression) ;

DIRECT INPUT

READ FILE(fi1e-name) INTO(variab1e-name) KEY(expression) ;

DIRECT UPDATE

READ FILE(fi1e-name) INTO(variab1e-name) KEY(expression) ;

REWRITE FILE(fi1e-name) FROM(variab1e-name) KEY(expression) ;

WRITE FILE(fi1e-name) FROM(variab1e-name) KEYFROMCexpression) ;

DELETE FILE(fi1e-name) KEY(expression) ;

9-3 DE04

STRUCTURE OF A REGIONAL FILE

A REGIONAL file consists of a number of 320-word buffers, each of which
contains at least one whole record; i.e., the maximum allowable record size is
320 words. As many records as can be fully contained will be placed in a single
buffer, and when the remaining buffer space is less than the record size, the
next record will be placed in the next buffer.

Figure 9-1 illustrates the structure of a REGIONAL file. This file was
created using the default octal pattern for a dummy record and specifying keys
of 2, 3, and 4. The first region of the file and the regions after region 4 are
all filled with dummy records. The record size for this example is 100 words.
Therefore, three records can be contained in each buffer and twenty words at the
end of each buffer are unused.

9-4 DE04

buffer 1

177000000000

region #1dummy record

data record region #2

data record region #3

unused space

buffer 2

data record region #4

177000000000

dummy record region #5

177000000000

dummy record region #6

unused space

Figure 9-1. Structure of a REGIONAL File

9-5 DE04

ATTACHMENT OF A REGIONAL FILE

To
met:

specify and attach a REGIONAL file, the following requirements must be

The file must be designated as REGIONAL. The REGIONAL keyword can be
specified in the ENVIRONMENT attribute at compile time, or, if no
ENVIRONMENT attribute is given, a descriptor file containing RSP cards
can be supplied at execution time.

A descriptor file must be provided to specify the file code and the
size of the fixed length record.

A device assignment control card for a direct access device must be
provided for the file.

The size of the work region to be reserved for REGIONAL files must be
specified by $ USE control card.

Descriptor File for a REGIONAL File

A file with REGIONAL organization has two types
it, namely: the RSP DATA card and the RSP RECORD card,
cards is as follows:

of cards associated with
The format of these two

8 16

RSP DATA FC=fc

RSP RECORD RECSZ = n [zDBIT = d]

where: fc is the two character alphanumeric code identifying the file.

n is the number of words in the fixed length record.

d is the octal dummy record pattern. If d is given, it must be a
12 digit octal value.

If the dummy record pattern is not given, the pattern * 11770000000001 is assumed.

Memory Reservation

Space must be provided for file control blocks and buffers by an
appropriate $ USE control card, as follows:

1______ 8_________ 16 _____________________________________

$ USE .RBUFl/n/,.RBUF2/2/

where: n is the number of words required for the REGIONAL files of a
program.

Each REGIONAL file requires a 400 word allocation. An estimate of the number of
words needed can be obtained as follows:

n = 400 * F

where: F is the maximum number of REGIONAL files open at one time.

9-6 DE04

The work region allocation is shared among the REGIONAL files. When only one
file is open, the remaining words in the allocation can be used as buffer space.
The opening of a second file subtracts 400 words from the area that can be used
for buffersz and so on. When a file is closed, its 400 word allocation is
released.

Calculation of File Size

To determine the number of links required for a REGIONAL file, the number
of records per 320-word buffer is calculated; then the number of buffers
required for the file is calculated on the basis of the total number of records
in the file; finally, the number of links required is determined by dividing the
number of buffers required by the number of buffers per link, as follows:

records-per-buffer FLOOR

buffers-per-f i1e ss CEIL

1i nks-requ i red — CEIL

320_____________
record-s i ze

records-in-file
recor ds-per-buf f er_

buffers-per-f i1e
12

Example of REGIONAL File Attachment

The following
organ izat ion:

fragment illustrates the attachment of a file with REGIONAL

1_______ 8________ 16_____________________________________

$ SNUMB
$ IDENT
$ USERID XXXXXX$XXXXXX
$ OPTION PL1
$ PL1

EX3: PROC
• • •
OPEN FILECF2) UPDATE TITLE('Yl') RECORD
• • •

$ USE .RBUF1/2000/,.RBUF2/2/
$ EXECUTE

$ PRMFL Bl,...

$ DATA Y1
RSP FC=B1
RSP RECSZ=40

$ ENDJOB

The $ USERID control card contains the system master catalog name and the
log-on password. A $ USERID control card must be included in the deck if a
$ PRMFL card is used. The USERID control card prevents unauthorized use of the
system resources.

9-7 DE04

UTILIZATION REPORT

When a program using REGIONAL files is executed, a utilization report is
prepared and upon completion of the job, the report is printed. The following
items are included in the utilization report:

LOGICAL READS

LOGICAL WRITES

PHYSICAL READS

PHYSICAL WRITES

DUMMY WRITES

ACTUAL RECORDS MAX

FILE LIMIT

BUFFERS USED

BUFFER SIZE MAX

DUMMY RECORD OCT.

This counter is incremented by one each time a READ
statement is executed.

This counter is incremented by one each time a
WRITE, REWRITE, or DELETE statement is executed.
This count includes the dummy records automatically
wr i tten.

This counter is incremented by one when a page is
transferred from the external device to a page
buffer.

This counter is incremented by one when a page is
transferred from a page buffer to an external
dev i ce.

This counter is incremented by one whenever a dummy
record is written. The number of dummy records
automatically written is included in this count.

The maximum region number actually used in a data
transmission statement is given.

The number of records in the file is given.

This counter is incremented by one each time any
page is transferred into a buffer for access to its
records.

The number of words in a buffer is gi ven.

The pattern used
i ndi cate a dummy

as the
record

first word of a record to
is given in octal.

EXAMPLES OF REGIONAL FILE ACCESS

Figure 9-2 illustrates the creation of a REGIONAL file. The file is
created in direct mode, so upon opening the file, the file is filled with dummy
records. The utilization report produced from the execution of this job is
gi ven in Figure 9-3.

The utilization report shows that the file consists of 80 records. This
number results from the record size (20 words) and the fact that the permanent
data file SAMPLE/REGI ON has a maximum size of 5 blocks (1600 words), of mass
storage space reserved for it as a result of a previous FILSYS activity (refer
to the File Management Supervi sor).

Opening the file causes 80 dummy records to be written, then 11 actual data
records are written in the program. The number of logLea 1 writes is, therefore,
91.

9-8 DEOU

The number of buffers used (12) includes 5 buffers used to write the 80
dummy records plus 7 buffers used as a result of the WRITE statement executions.
The number of buffers used in the latter case is determined by the amount of
buffer space in memory, the input sequence of keyed records, and the algorithm
used by the REGIONAL processor for determining which buffer in memory (if there
are more than one) will be overwritten when none contains the referenced record.
In this example the amount of buffer space is 800 words, allowing for 2 buffers
in memory. When neither contains the referenced record for a given WRITE
statement execution, the algorithm turns out the least recently accessed buffer
to bring in the needed page.

9-9 DE04

1_______ 8________ 16__

$ SNUMB
$ IDENT
$ USERID XXXXXX$XXXXXX
$ OPTION PL1
$ PL1 LIST

RFC: PROC OPT IONS(MA IN);
DCL POOL FILE RECORD KEYED ENV IRONMENTCREG IONAL);
DCL SYSIN FILE;
DCL 01 REC,

02 ORDER CHARC32),
02 IMAGE CHAR(48);

ON ENDFILE(SYSIN) GOTO EXIT;
OPEN FILE(POOL) OUTPUT DIRECT TI TLE(”YY");

IN: GET LISTCORDER,IMAGE);
WRITE FILE(POOL) FROM(REC) KEYFROMCORDER);
GOTO IN;

EXIT: CLOSE FILE(POOL);
END;

$ USE .RBUF1/800/,.RBUF2/2/
$ EXECUTE
$ LIMITS 5,55K,-2K
$ PRMFL RX,W,R,SAMPLE/REGI ON
$ DATA YY
RSP DATA FC=RX
RSP RECORD RECSZ=20
$ DATA I *
39 UPHAM
22 ESSEX
12 ROWE
45 BELLEVUE
6 STRATFORD
10 ORIENT
21 LEBANON
42 PORTER
34 ARDSMOOR
5 WASHINGTON
8 HILLSIDE
$ ENDJOB
* * * EO F

Figure 9-2. REGIONAL File Creat ion

RSP Utilization Report

Logi cal Reads
Logi cal Wri tes
Phys i ca1 Reads
Phys i cal Wr i tes
Dummy Wr i tes
Actual Records Max
File Limit
Buffers Used
Buffer Size Max
Dummy Record Oct.

Data File RX
0

91
12
12
80
45
80
12

320
177000000000

Figure 9-3. Utilization Report for REGIONAL File Creation

9-10 DE04

Figure 9-4 illustrates the access of the REGIONAL file just created. The
utilization report produced as a result of the execution of this job is given in
Figure 9-5.

The input data causes the records with keys 22 and 6 to be changed, the
records with keys 34 and 10 to be deleted, and the record with key 7 to be
added. The utilization report indicated that five logical wr i tes were
performed, one for each input item. Of these five logical writes, two writes
were dummy wr i tes since the deletion of a record in a REGIONAL file involves
writing a dummy record. Three phys i ca1 reads and physical wr i tes were necessary
since records 6, 7, and 10 are located in buffer #1, record #22 is located in
buffer #2, and record #34 is located in buffer #3.

$
$
$
$
$

SNUMB
I DENT
USERID
OPTION
PL1

XXXXXX$XXXXXX
PL1
LIST

RFA: PROC OPT IONS(MA IN);
DCL POOL FILE RECORD KEYED ENV IR0NMENT(REG I ONAL);
DCL 01 REC,

02 ORDER CHAR(32),
02 IMAGE CHARC48);

ON ENDFILE(SYSIN) GOTO EXIT;

OPEN FILE(POOL) UPDATE DIRECT TITLE ("YY”);
LOOP: GET LI ST(ORDER, I MAGE);

IF IMAGE = ’*! THEN DELETE FILE(POOL) KEY(ORDER);
ELSE REWRITE FILE(POOL) FROM(REC) KEY(ORDER);

GOTO LOOP;
EXIT: CLOSE FlLE(POOL);

END;

$ USE .RBUF1/400/,.RBUF2/2/
$ EXECUTE
$ LIMITS 5,55K,-2K
$ PRMFL RX,W,R,SAMPLE/REGI ON
$ DATA YY
RSP DATA FC=RX
RSP RECORD RECSZ=20
$ DATA I *
22 GLOUCESTER
34 *
6 AVON
7 HOLLAND
10 *
$ ENDJOB
*** EOF

Figure 9-4. REGIONAL File Access

9-11 DE04

RSP Utilization Report

Logi ca1 Reads
Logi cal Wr i tes
Phys i ca1 Reads
Phys i ca1 Wr i tes
Dummy Writes
Actual Records Max
File Limit
Buffers Used
Buffer Size Max
Dummy Record Oct.

Data File RX
0
5
3
3
2

34
80

3
320

177000000000

Figure 9-5. Utilization Report for REGIONAL File Access

9-12 DE04

SECTION X

LINKING PL/I AND OTHER LANGUAGES

This section describes the mechanism for linking PL/I programs and programs
written in other languages. The format and contents of the argument list are
desc r i bed.

DATA

Data can be shared between programs written in PL/I and programs written in
other languages, provided the format and mapping of a PL/I data type is
equivalent to the format and mapping of a data type in the other language. PL/I
has a large number of data types; usually, a subset of these data types is
available in another language. The internal representation for each PL/I data
type is given in the next section of this manual. The information there and
below applies both to data content of RECORD I/O files and arguments passed via
CALL to subprograms.

Equivalent Data Representations

The following pairs of data declarations
representations in Series 60 PL/I and COBOL-68.

describe equivalent storage

COBOL-68

01 A PIC 9(8) COMP-1.
01 B PIC 9(18) COMP-1.
01 C PIC 9(8) COMP-2.
01 D PIC 9(18) COMP-2.
01 E PIC 9(10) COMP-3.

01 A OCCURS 2 TIMES.
02 B OCCURS 3 TIMES.
03 C OCCURS 4 TIMES.
04 X PIC 9(8) COMP-1.

DCL A FIXED BlN(35);
DCL B FIXED BIN(71);
DCL C FLOAT BIN(27);
DCL D FLOAT BIN(63);
DCL E FIXED BIN(35);

DCL 01 A(2) ALIGNED,
02 B(3),
03 C(4),
04 X FIXED BIN(35);

10-1 DE04

The following pairs of data declarations describe equivalent storage
representation in Series 60 PL/I and FORTRAN.

FORTRAN

DCL A FIXED BIN(35);
DCL B FLOAT BIN(27);
DCL C FLOAT BIN(63);
DCL D COMPLEX FLOAT BIN(27);
DCL E CHAR(n) ALIGNED;

INTEGER A
REAL B
DOUBLE PRECISION C
COMPLEX D
CHAR*n E

Note that n must be less than or equal to 511 in FORTRAN and must be less
than or equal to 256 in PL/I if the variable is involved in an Input/Output
statement or requires conversion. Also, since PL/I character data is ASCII
strings in 9-bit bytes, the FORTRAN program called by PL/I must be compiled in
the ASCI I mode.

The following pairs of data declarations describe equivalent storage
representations in Series 60 PL/I and COBOL-74.

COBOL-74

DCL A FIXED BINC35);
DCL B CHARC6);

01 A COMP-6.
01 B PIC S999V99

SIGN LEADING SEPARATE
DCL C CHAR(IO);01 C PIC X(10).

01 D OCCURS 2 TIMES.
02 E OCCURS 3 TIMES.
03 F OCCURS 4 TIMES.
04 G COMP-6.

DCL 01 D(2) ALIGNED,
02 E(3),
03 F(4),
04 G FIXED BINC35);

Note that a future version of PL/I is expected to have a DECIMAL arithmetic
format compatible with COBOL-74 COMPUTATIONAL data but incompatible with the
present PL/I DECIMAL representation. The future form will use the packed
decimal hardware format.

INTERFACE

When a PL/1 program calls a program written in another language, the called
program is responsible for saving any index registers used by PL/I programs and
restoring these index registers when control is returned to the PL/I calling
program. The argument list and return address are transmitted to the called
program by index registers. The following index registers are involved:

Index register 6 contains the starting address of the argument list.

Index register 1 contains the return address to be used for normal return
to the PL/I program.

Index register 2 contains the current stack frame header address and must
be saved by the called program and restored before return to the PL/I
calli ng program.

10-2 DE04

Argument

The argument list contains a control word, followed by an entry for each
argument. If any of the arguments has a variable length dimension (or, if the
OPTIONS (VARIABLE) attribute is used in the procedure declaration), an
additional entry is made for every argument in the list. The argument list has
the following format:

0_________________ 18 24__________ 3 5

m n

arg-1 of f-1 0

arg-2 off-2 0

arg-n of f-n 0

desc-1 0

desc-2 0

desc-n

where: n

m

arg- i

desc-i

indicates the number of arguments in binary fixed point.

indicates the number of arguments
descriptors are required.

in binary fixed point if

is a pointer value indicating the address of the i-th
argument. If the argument has a bit offset, the offset
value occupies the least significant bits of bits 18
through 23.

is a pointer value indicating the address of the i-th
descriptor. The bit offset of this pointer value is always
zero since argument descriptors begin on a word boundary.

If none of the arguments requires a descriptor, m is zero. If the called
procedure does not have any arguments, index register 6 contains the address of
a word containing zero.

10-3 DE04

Argument Descriptor

An argument descriptor contains information about the transferred arguments
in the following format:

where: T indicates the data type of the arguments.

P indicates the packing status of the argument, as follows:

P=1 indicates the argument is packed.
P = 0 indicates the argument is unpacked.

D gives the number of dimensions in an array. The array bounds
and multipliers follow the base descriptors.

S gives the size.

TYPE

The data type of the argument is indicated by a code,
their interpretations are as follows:

The code values and

Data Type
Code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Data Type

Real binary fixed single precision
Real binary fixed double precision
Real binary float single precision
Real binary float double precision
Complex binary fixed single precision
Complex binary fixed double precision
Complex binary float single precision
Complex binary float double precision
Real decimal fixed
Real decimal float
Complex decimal fixed
Complex decimal float
Pointer
Offset
Label

St ructu re
Area
Bit string
Varying bit string
Character string
Varying character string
File

10-4 DE04

DIMENSIONS IN AN ARRAY

The array bounds and
argument, as follows:

mult i pl 1ers follow the descriptor for the array

0 567 1112 35

T P D S

lower bound-m

upper bound-m

mu 1 t i pl i er-m

i nformat i on
for the m-th
(ri ghtmost)
d imens ion

i nforma t i on
for the first
(1ef tmos t)
d imens i on

When the array elements are packed, the multiplier is in bits; otherwise,
it is in words.

SIZE

The size field in the descriptor gives the following information depending
upon the argument type:

string - the number of bits or characters.

area - the number of words.

structure - the number of elements in the structure.

arithmetic - the scale in the leftmost 12 bits and the precision in the
rightmost 12 bits. The scale is a two’s complement signed
value.

10-5 DEOU

EXAMPLE

The following PL/I program calls two external procedures, as follows:

jPl: PROC;
DCL X FIXED;
DCL D FIXED DECIMAL; .
DCL Bl BIT(l),

B2 BIT(2);
DCL 01 S,

02 B(5) UNALIGNED,
03 C FIXED,
03 D2 FIXED,

02 A DECIMAL;
DCL SUB1 ENTRYCFIXED,FIXED DEC IMAL,BIT(1),FIXED UNALIGNED);
DCL SUB2 ENTRY(FIXED,1,2(*) UNALIGNED,3 FIXED,3 FIXED,2 DECIMAL);
CALL SUB1(X,D,Bl,D2); /
CALL SUB2(X,S);

END;

The object program produced for Pl includes procedure calls to SUB1 and
SUB2. Before the transfer, index register 6 is set to point to the argument
list. The procedures SUB1 and SUB2 must save index register 2 and restore it
upon return. The argument lists for the two procedures are as follows:

Argument for SUB1:

0____________________ 18 24____________ 35

0

L(X) 0

LCD) 0

LCBl) 0

LCD2) 18

Argument List for SUB2:

0____________________ 18 24____________H

2 2

LCX)

LCS)

L(DX)

LCDS)

10-6 DE04

and the argument descriptors are as follows:

DX

DS

descriptor for X

descriptor for S

descr i ptor for B

lower bound of B

upper bound of B

mu 1t i pli e r for B

descriptor for C

lower bound of C

upper bound of C

multiplier for C

descr i ptor for D2

lower bound of D2

upper bound of D2

multiplier for D2

descriptor for A

The descriptor for a structure is immediately followed by the descriptors for
each of its members. Also notice that the members of dimensioned structures
contain copies of the bounds of the containing structure.

10-7 DEOU

OPTIONS ATTRIBUTE

The OPTIONS attribute can be used to generate standard calling sequences
for programs written in GMAP, COBOL, or FORTRAN. For example, consider the
following program, which calls external procedures written in PL/I, GMAP, COBOL,
and FORTRAN:

Pl: PROC 0 PT I ONS (MA I N) ;
DCL XI FIXED STATIC; -S'
DCL Fl FLOAT EXTERNAL;
DCL DI FIXED DECIMAL EXTERNAL;
DCL CF1 COMPLEX FLOAT;
DCL Bl BIT(l);
DCL B2 BIT(2);
DCL B3 BIT(3) ALIGNED STATIC;
DCL Cl CHAR(l) EXTERNAL;
DCL PSUB ENTRY(FIXED,FIXED DEC I MAL,BIT(1),BIT(2));
DCL GSUB ENTRY(FIXED,BIT(3) ALIGNED)

OPTIONS(GMAP);
DCL CSUB ENTRY(FIXED,FLOAT,FIXED DEC I MAL,CHAR(1))

0PT IONS(COBOL);
DCL FSUB ENTRY(FIXED,FLOAT,COMPLEX FLOAT,CHAR(1))

OPTIONS(FORTRAN);

CALL PSUB(X1,D1,B1,B2);

CALL GSUB(X1,B3);

CALL CSUB(XI,F1,DI,Cl);

CALL FSUBCX1,Fl,CF1,Cl);

END;

Two different calling sequences can be generated for a procedure call to an
entry declared with the OPTIONS attribute specifying GMAP, COBOL or FORTRAN.
The simplest is possible only if the referenced arguments have the attribute
STATIC and have no execution time location variability such as nonconstant
subscripts. In such cases the code is:

TSX1 entryname
n+2, I C
0
arg-1
arg-2

TRA
ARG
ARG
ARG

arg-n

When any argument fails to meet the above criteria, a normal PL/I calling
sequence is generated. In this second case, an argument list is built as usual
and a PL/I procedure call is made to a run-time support routine. The support
routine then builds a calling sequence similar to that above, executes it, and,
upon regaining control, returns through the normal PL/I mechanism.

10-8 DEOU

The four code generation cases illustrated in the sample program above are:

CALL

CALL

CALL

CALL PSUB Normal PL/1 procedure

EAQ .STATICO XI in internal static storage
STQ 11,SP
EAQ DI External reference
STQ 12,SP
EAQ 8,SP Bl in automatic storage
STQ 13,SP
EAQ 9,SP B2 in automatic storage
STQ 14,SP
LDQ 4,DL There are four arguments
STQ 10,SP
EAX6 10,SP
TSXLP PSUB External reference

GSUB Inline subroutine call

TSXLP GSUB External reference
TRA 4, 1 C
ARG 0
ARG .STATICO XI
ARG .STATICl B3

Inline subroutine callCSUB

TSXLP CSUB Externa 1 refe rence
TRA 6, 1 C
ARG 0
ARG .STATICO XI
ARG Fl Externa 1 refe rence
ARG DI Externa 1 refe rence
ARG Cl Externa 1 reference

FSUB Dynamically built subroutine call

EAQ
STQ
EAQ
STQ
EAQ
STQ
EAQ
STQ
LDQ
STQ
EAXBP
EAX6
TSXLP

.STATICO
11, SP
Fl
12,SP
6,SP
13,SP
Cl
14,SP
4,DL
10,SP
FSUB
10,SP
. P0369

XI

External reference

CF1 in automatic storage

External reference

Number of arguments

External reference
Set arg-list pointer
GMAP-CALL

10-9 DE04

SECTION XI

INTERNAL REPRESENTATION OF PL/I DATA

To discuss the positioning of variables in storage, it is necessary to make
a distinction between major variables and member variables. A major variable is
either a level 01 structure or a variable not contained within a structure. A
mem^gjL v.a.r i ab 1 e is a variable contained within a structure. A major variable is
positioned at a word or even-word boundary depending on its data type. A member
variable is positioned at a bit, byte, word, or even-word boundary depending on
its data type and alignment.

VARIABLES

Each PL/I variable has a data type, an aggregate type, and an alignment
type. The data type and the aggregate type determine the values that can be
accommodated by a storage unit. The alignment type affects the way in which the
variable is laid out in storage.

Ali gnment

Every variable has an alignment attribute. An ALIGNED variable is stored
for convenient access and an UNALIGNED variable is stored for conservation of
storage.

If the alignment attribute is not declared for a variable, the variable
acquires this attribute in the following way:

• If the variable is contained in a structure with an explicitly
declared alignment attribute, the variable acquires the alignment
attribute of the smallest containing structure with an explicit
alignment declaration. For example, in the following structure:

DCL 01 SI,
02 S2 ALIGNED,

03 Bl BIT(2),
03 S3 UNAL,

0U B2 BIT(3),
03 B3 BIT(U),

02 BU BIT(5);

Bl acquires the alignment attribute of S2, namely: ALIGNED.
B2 acquires the alignment attribute of S3, namely: UNALIGNED.
B3 acquires the alignment attribute of S2, namely: ALIGNED.
BU remains unresolved.

DE0U

If the alignment of a variable cannot be resolved by the explicit
declaration of containing structures, the alignment is determined by
the variable’s data type. A nonvarying string scalar or a structure
acquires the UNALIGNED attribute. All other variables acquires the
ALIGNED attribute. The following list indicates the default
assumption made for an unresolved variable:

UNALIGNED

nonvarying string variables
s t ructu res

ALIGNED

varying string variables
arithmetic variables
add res s variables
area variables
ar rays

Represen tat i on

There are four units available for the representation of data, namely:
bits, bytes, words, and double-words. The characteristics of the data type
determine the minimum unit that can be used to represent it. The following list
indicates the minimum units for some data types:

Data Type

binary ar i thmet i c
bit str i ngs

dec ima1 a r i thmet i c
character strings

varying st r i ngs
file, entry, and 1abel

complex arithmetic

Mini mum
Unit

bi t

byte

word

doub1e-wo rd

The unit of
variable in memory,
boundary.

representat i on
a

determines the boundary
decimal number starts and

requirement of the
ends on a byte

Positioning in Memory

A variable can be positioned in memory either to facilitate its access or
to conserve storage. A frequently accessed variab1e . shou1d be positioned by the
user at a word or even-word boundary and occupy an integral number of words. An
infrequently-accessed variable should be positioned at its minimum unit boundary
and occupy only the storage necessary for its representation.

The compiler assumes that a major variable is frequently accessed and
therefore, positions it at a word boundary independent of its alignment
attribute. Furthermore, a major variable that is an external or a double
precision binary arithmetic variable is positioned at an even-word boundary.

11-2 DEOU

(hie positioning of a member scalar variable depends upon its data type and
its alignment. All ALIGNED scalar variables are positioned at a word or
even-word boundary. UNALIGNED scalar variables are positioned at the boundary
determined by their data type.

The positioning of a member aggregate variable depends upon the maximum
unit of.representation of its components and its alignment. ALIGNED aggregates
a re positioned at a word.or even.word boundary. UNALIGNED member aggregates are
positioned at the maximum unit of representation of their components. For
example, an UNALIGNED member aggregate consisting of UNALIGNED bit strings
starts at. a bit boundary and occupies only as many bits as necessary to
represent its contents. However, an UNALIGNED member aggregate consisting of
UNALIGNED bit and character strings starts at a byte boundary and occupies
enough bytes to represent its contents.

A more detailed discussion of the positioning of member variables is given
in the second half of this section.

Supplementary Storage

When a variable is positioned for efficient access, it sometimes occupies
more storage than is necessary for its representation. This additional storage
is . called £U.ppl emen ta r y s t o r a g e . The supplementary storage is used in
conjunction with the minimum storage required for the variable to permit a
larger and more convenient representation of the stored value. For example, the
value is stored for whole word referencing and no shifting or masking is
requ i red.

Filler Storage

The positioning of variables can create unused space. When the unit of
representation of two adjacent variables is different, filler storage is often
required. For example, a variable represented in bits can be followed in memory
by a variable represented in bytes. If the last bit occupied by the first
variable is not the last bit of a byte, the bits between the last bit of the
variable and the first bit of the next byte are filler storage. Filler storage
is never allocated at the beginning of a variable.

Filler storage is also created by alignment requirements. For example, an
ALIGNED com plex number foil owed by an UNALIGNED bit string containing 1 bit
followed by another ALIGNED complex number results in 71 bits of filler storage.

Grouping variables with the same unit of representation and alignment
minimizes the amount of filler storage allocated. Filler storage within an
array is especially costly since the unused space occurs within each element of
the array.

11-3 D E04

Packed Property

The terms packed and unpacked are applied to variables to describe their
internal representation . A scalar variable is said to be packed if it is
positioned at a boundary determined by its minimum unit of representation. and
occupies only enough of those units to represent its value. A scalar variable
is said to be unpacked if it is positioned at a boundary greater than its
minimum unit of representation.

An arithmetic, nonvarying string, or pointer variable that is declared
UNALIGNED is packed. An aggregate variable that is declared UNALIGNED and
contains only packed variables is packed.

The symbol table listing gives
for every member variable.

the alignment attribute and packed property

STORAGE LAYOUT RULES FOR PL/I MEMBER VARIABLES

Exact rules for the layout of a member variable in the 36-bit, 4-byte words
of memory are given here. The rules assume that the starting layout address of
the variable is the terminating word and bit address of the immediately
preceding structure member (the bit offset for the first member of a level
structure is 0). The rules are given for scalar variables, then for structure
variables, and finally for array variables.

Storage Layout for Member Scalars

To determine the storage layout for a given scalar variable at a given word
and bit address, proceed as follows:

1. Begin the layout at the given address.

2. Use Table 11-1 to determine the requ i red boundary for the variable.
If the starting address is not at a boundary of the required type,
then lay out filler storage up to the next boundary of the required
type.

3. Use Table 11-1 to determine the mini mum storage for the variable. Add
the specified amount of storage to the layout.

ii. If the layout does not end at a boundary of the required type (as
determined in Step 2), then lay out suppl emen t.a r_y „s fo rggg up to the
next boundary of the required type.

11-4 DE04

^■Applies to both major and member scalar variables.

2Applies to member scalars only.

Table 11-1. Boundary and Length for Scalar Variables

Data Type
Required Boundary

Mini mum
S torageALIGNED 1 UNALIGNED2

REAL FIXED BINARY(pzq)
1 < P <. 35
36 < p < 71

word
even word

bi t
b i t

(p+1) bits
(p+1) bits

REAL FIXED DECIMAL(p,q) word byte (p+1) bytes

REAL FLOAT BINARY(p)
1 < P < 27
28 X p X 63

word
even word

bit
bi t

(p+9) bits
(p+9) bits

REAL FLOAT DECIMAL(p) word byte (p+2) bytes

COMPLEX FIXED BINARY(p,q) even word bi t 2*(p+1) bi ts

COMPLEX FIXED DECIMAL(p,q) word byte 2*(p+l) bytes

COMPLEX FLOAT BINARY(p) even word bi t 2*(p+9) bits

COMPLEX FLOAT DECIMAL(p) word byte 2*(p+2) bytes

CHARACTER
NONVARYING
VARYING

word
word

byte
word

(ml) bytes
(ml+U) bytes

BIT
NONVARYING
VARYING

word
word

bi t
word

(ml) bits
(ml+ 36) bits

PICTURE "P" (with related
data type CHAR(n))

word byte (n) bytes

LABEL word word 1 word

ENTRY word word 1 word

FORMAT word word 1 word

POINTER word bi t 36 bits

OFFSET word bi t 36 bits

FILE word word 1 word

AREA(as) word word (as) words
—- - - -

11-5 DEOU

As the basis for an example of the layout of a scalar variable, consider
the following declaration:

DCL 01 Al,

02 PHI FIXED,

According to the default rules, this declaration is equivalent to:

DCL 01 Al UNALIGNED,

02 PHI FIXED BIN(17) ALIGNED,

Suppose the starting address for PHI is bit 27 of word 103.
given prescribe the following layout for PHI:

Then the rules just

0__________9 _______ 18________ 27
/////////
////////

PHI
/////////////////
__________ (suppl .)

This layout is determined as follows:

1. The layout begins at bit 27 of word 103.

2. According to
wo rd. Since
layout begins

Table
the

with

11-1, the
start i ng

one byte o

requ i red boundary for the variable
at a word boundary,

i s
theadd ress

f filler
i s not

storage (f u 1 1 y shaded).

3. The layout continues with the mini mum s to rage for the variable, 18
bits.

U. Since the required boundary is word, the layout concludes with 18 bits
of supplementary storage (half shaded).

The storage available for PHI is a full word, the minimum plus the supplement.
Therefore, the value of PHI can be stored in a way that is suitable for the
full-word operations of the hardware. PHI is right-justified in the word to
eliminate the need for masking and shifting operations.

11-6 DE0U

Storage Layout for Member Structures

To determine the storage layout for a given member structure variable at a
given word and bit address, proceed as follows:

1.

2.

3.

Begin the layout at the given address.

Determine the requ i red bounda ry type for the structure as follows:

a. Make a list of the required boundaries for the members of the
structure.

b. If the structure itself is ALIGNED, then add the boundary word to
the list.

c. Find the boundary on the list that refers to the largest unit of
storage and take that to be the required boundary for the
structure.

If the starting address is not a boundary of the required
lay out filler storage up to the next boundary of storage.

type, then

Continue the layout of the structure by laying out storage for each of
its members.

L. If the required boundary is even wo rd or wo rd and the layout does not
end at a word boundary, then lay out supplementary storage to the next
word boundary.

As the basis for an example of the layout of a structure variable, consider
the following declaration:

DCL 01 S,

0 2 SI
03ZALPHA DEC(6,2),
03 BETA BITC12),
03 GAMMA CHAR(U),

According to the default rules, this declaration Is equ i va1en t to:

DCL 01 s UNAL,
•

•
02 SI UNAL,

03 ALPHA REAL FIXED DECIMAL(6Z 2) ALIGNED
03 BETA BIT (12) NONVARYING UNAL,
03 GAMMA CHARACTERS) NONVARYING UNAL,

11-7 DEOU

Suppose the starting address for the structure SI is word 72, bit 27. Then the
rules prescribe the following layout for SI:

0__________9_________ 18________ 27
72

73

74

75

76

/////////
LLLLLLLLL

ALPHA

ALPHA (cont.)
/////////
(suppl.)

///////
BETA /////// GAMMA

GAMMA (cont.)
//////////////////

SI (SUPP1.)

This layout is determined as follows:

1. The layout of SI begins at bit 27 of word 72.

2. The list of required boundaries for the members of SI is:

word
bit
byte

The maximal boundary from this list is wo rd. Since the layout begins
on a bit boundary, 9 bits of filler storage are required. Hence, SI
begins at word 73, bit 0.

The layout continues with the 3 members of the structure. Each is
laid out according to the rules for a scalar, as follows:

ALPHA The required boundary is word and the minimum storage is 7
bytes. The layout ends with 1 byte of supplementary
s torage.

BETA The required boundary is b i t and the minimum storage is 12
bits. No filler or supplementary storage is used.

GAMMA The required boundary is byte and the minimum storage is 4
bytes. The layout begins with 6 bits of filler storage. No
supplementary storage is required at the end.

Since the layout of the last member ends in the middle of a word and
the required boundary for the structure is word, the layout of the
structure ends with 2 bytes of supplementary storage.

The order in which the members of a
significant effect on the amount of
structure. As an example, consider:

structure are arranged can have a
storage required for the layout of a

DCL 01 A,
02 I BIT,
02 CELL,

03 IDENT CHAR(2),
03 LINK PTR,

02 X BIT;

11-8 DE04

The layout for A requires 4 full words, as follows:

9 18
60

61

62

63

0
///////////////////////////////////

11/ / / / / / ///////// / / ////// ililliiiuil
/////////////////
\iiiiiiiiLiJim±I DENT_______

LINK

X///////////////////////////////////
_________________ A (supplementary)

This layout arises from the fact that LINK is an ALIGNED POINTER and specifies a
word boundary not only for its own storage, but also for the structure A.CELL of
which it is a member.

Consider the following revision of the declaration of the structure A:

DCL 01 A,
02 CELL,

03 LINK PTR,
03 IDENT CHARC2),

02 I BIT,
02 X BIT;

In most cases, this change in the ordering of the members of A has no effect on
the usage of the structure, but the resulting layout occupies 3 words instead of
4:

60

61

62

LINK
IDENT //////////////////

IX///////////////////////////////////
A (supplementary)

Some storage is still wasted in this layout. IDENT, I, and X could all fit in 1
word. However, to further improve the allocation in storage, a change in the
level structure is required; that type of change could well affect the usage of
the structure.

Consider a d i ffe ren t revision of the declaration of the structure A:

DCL 01 A UNAL,
02 I BIT,
02 CELL,

03 IDENT CHAR(2),
03 LINK PTR,

02 X BIT;

11-9 DE04

Because of the addition of the attribute UNAL for A, the layout uses 2 words
instead of 4:

0 9 18 27
60 1///////

/////// IDENT __ LINK_____

61 LINK (cont) X
/////////
A(suppi)

For this version, however, the interpretation of the value of the POINTER value
takes more time than for the ALIGNED value.

Storage Layout for Member Arrays

To
address,

determine the storage
proceed as follows:

layout for a given array variable at a given

1. Begin the layout at the given address.

2. The requ i red boundary for the array is the same as for the elements of
the array. If the starting address is not a boundary of the required
type, then lay out filler storage up to the next boundary of the
requ i red type.

3. Continue the layout of the array by laying out storage for each of its
e1 emen ts.

U. If an element does not end at the required boundary, then lay out
supplementary storage to the next boundary of the required type.

The alignment attribute of an array is especially important, since it is in
the layout of large arrays that the alignment can have a significant effect on
storage requirements. As a simple illustration, consider the following
decl arat i ons:

DCL PMl(50,50) BIT;

DCL PM2(50,50) BIT ALIGNED;

The array PM1 requires 70 words, whereas PM2 requires 2500 words.

For a second example of the layout of an array, consider the following
decl a ra t i on :

DCL 01 S,

02 TABLE(IO),
03 ALPHA FIXED BlN(U4),
03 GAMMA CHAR(l),

11-10 DE0U

According to the default rules, this decl a rat i on is equivalent to:

DCL 01 S,

02 TABLE(IO) UNAL,
03 ALPHA FIXED BlN(44) ALIGNED,
03 GAMMA CHAR(l) UNAL,

Suppose the starting address for the layout of TABLE is word 51, bit 20.
Then the rules prescribe the following layout for TABLE:

0 9 2 0________ 27
51

52

53

54

55

//////////////////
//////////////////

___________________ALPHA
ALPHA
(cont.)

//////////////////////////
ALPHA (suppl.)

GAMMA
//////////////////////////

TABLE (suppl,)
////////////////////////////////////
--------------------TABLE (suppl. cont.)_______

TABLEC1)

88
__ _________________ ALPHA

89 ALPHA
(cont.

///////////////////////////
ALPHA (suppl.)

90
GAMMA

///////////////////////////
TABLE (supol..)

91 ////////////////////////////////////
TABLE (suppl. cont.)

TABLE(10)

The layout is determined, as follows:

1. The layout of TABLE begins at bit 20

2. The list of required boundaries from
element of TABLE is:

of word 51.

Table 11-1 for members of an

even word
byte

(ALPHA)
(GAMMA)

The maximal boundary is even word, which becomes the required boundary
for a TABLE element (and for TABLE itself). Since the layout starts
on a bit boundary, 16 bits of filler storage are required. Thus, the
first element of TABLE actually begins at word 52, bit 0.

11-11 DE04

3. The layout for each element of TABLE is determined as follows (from
the rules for laying out member scalars):

ALPHA The required boundary is even word and the minimum storage
is 45 bits. Twenty-seven bits of supplementary storage are
required to bring the layout up to the next even word
boundary. Note that in the resulting double-word the value
of ALPHA will be right-justified because it is binary.

GAMMA The required boundary is byte and the minimum storage is one
byte. No filler or supplementary storage is required.

Since the last member (GAMMA) of the element does not end on the
required even-word boundary for the element/ lay out supplementary
storage of seven bytes.

Note that the storage requirements for TABLE can be considerably reduced by
altering its declaration:

DCL 01 S,

02 TABLE(IO) UNAL,
03 ALPHA FIXED BlN(44),
03 GAMMA CHAR(l),

In this case, TABLE will actually begin at bit 27 of word 51, each element
will occupy only 6 bytes of storage, and TABLE will end on bit 26 of word 66.

11-12 DE04

SECTION XI I

INCLUDE Fl LES

This section describes the creation and maintenance of the INCLUDE file.
The INCLUDE file contains the macro bodies that can be referenced in PL/I
programs by the use of the ^INCLUDE statement. The use of the utility program
SRCLIB is described and illustrated.

SRCLIB PROGRAM

The system utility program, SRCLIB, is used to create and maintain an
INCLUDE file. The actions to be performed are specified by a series of control
cards. The SRCLIB control cards provide for the initialization and creation of
the INCLUDE file, subsequent modification by the inclusion and deletion of macro
text, and copying and listing activities.

USE OF THE SRCLIB PROGRAM

The SRCLIB program is called, using a $ PROGRAM control card,
library file as the compiler.

from the same

$ PROGRAM SRCLIB

Files Used by the SRCLIB Program

Several files are used by the SRCLIB
description is given in the following list:

program. For each file code, a

File Code Description

. L INCLUDE file, which contains the macro text to be created or
ma i nta i ned .

1 N input file, which contains the control cards and text used by
the SRCLIB program.

any input or output file, which can be used either to contribute
text to the INCLUDE file or save text from the INCLUDE file.

WK work file, which is required for the activity when the MODIFY
control card is present.

12-1 DE04

The SRCLIB program gets its directions from the input file, IN, The control
cards in that file determine the actions to be taken on the INCLUDE file, .L.
Some of these control cards specify the file code of another file for input to
or output from the INCLUDE file. The presence of the MODIFY control card makes
it necessary to include a work file, WK.

SRCLIB CONTROL CARDS

SRCLIB control cards give information to the SRCLIB program about the
creation and maintenance of the INCLUDE file. SRCLIB control cards are
summarized in Table 12-1. Following the table, each control card is described
in detail.

Table 12-1. SRCLIB Control Cards

Card Name Mean i ng Pa ramete rs

ALTER Add text to or delete text
from the INCLUDE file.

1 i n e - n 1 ne-m]

COPY Copy specified macro to the
spec i f i ed file.

text-name, f i1e-code ', BCD*

CREATE Place new text in the INCLUDE
file.

text-name ,f i1e-code]

DELETE Delete the specified macro
from the INCLUDE file.

text-name

INITIAL Initialize the INCLUDE file.

LIST List the specified macro or the
entire INC LUDE file.

[text-name]

MODIFY Modify the specified macro in
the INCLUDE file.

text-name

SAVE Copy the entire INCLUDE file to
the spec i f i ed file.

f i 1 e-code [, BCD]

The text-name is the name of a macro in the INCLUDE file. In all cases,
the text-name is limited to a maximum of 32 characters.

The file-code is the two character name used to identify a file.

12-2 DE04

ALTER Control Card

The * * ALTER control card is used to modify the INCLUDE file. A * ALTER
control card gives the line numbers that are to be modified within the macro
text. The * MODIFY control card gives the name of the macro to be modified and
therefore, must always precede a series of ALTER cards. The format of the
* ALTER control card is as follows:

1 8 16

* ALTER 1 i ne-n|\ 1 i ne-m]

where: line-n is a decimal integer
1ine-m is a decimal integer

if only
i ns er ted i n
spec i f i ed.

line-n is specified, the text following the * ALTER card is
the macro named by the MODIFY control card before the line

If both line-n and 1ine-m are specified, line-n through 1ine-m of the macro
specified by the * MODIFY card are deleted. If text follows the * ALTER card,
it is inserted at the point of deletion.

For example, consider the following sequence of control cards:

* MODIFY MAC1
* ALTER 10

DCL XI FIXED;
DCL X2 FLOAT;

* ALTER 20, 2U
* ALTER 31, 36

CALL Pl • /

The declarations of XI and X2 are inserted in the macro MAC1 before line 10;
lines 20 through 2U of MAC1 are deleted; and lines 31 through 36 of MAC1 are
replaced by the procedure call to Pl.

COPY Control Card

The * COPY control card is used to copy a macro from the INCLUDE file to
the file specified by the file code. The format of the * COPY control card is
as foilows:

1 8 16

* COPY text-name,fi1e-code ,BCD]

where: tex t-name
f i1e-code
BCD

identifies the macro to be copied.
identifies the file to which to copy the text,
indicates that the text is to be represented
rather than ASCII on the designated file.

in BCD

The * COPY control card allows the user to select and copy a single macro from
the INCLUDE file. To copy the entire INCLUDE file, the * SAVE control card is
used.

12-3 DEOU

CREATE Control Card

The * CREATE control card is used to create or extend the INCLUDE file.
The format of the * CREATE control card is as follows:

1 8_______ 16

* CREATE text-name[,fi1e-code]

where: text-name identifies the name to be associated with the macro
text.

file-code identifies the file containing the macro text.

If the f i1e-code
card in the IN file are
the macro text is taken

is not specified, the card
used as the macro text. If
from the file identified by

images fol lowing
the fI 1e-code i s
that file code.

the control
spec i f i ed,

If the text-name specified for the new macro already exists in the INCLUDE
file or if there is not sufficient space in the INCLUDE file to enter the new
text, the * CREATE control card is ignored and a warning message printed.

DELETE Control Card

The * DELETE control card is used to delete a macro from the INCLUDE file.
The format of the * DELETE card is as follows:

1______ 8_______ 16 ____________________________________

* DELETE text-name

where: text-name indicates the name of the macro to be deleted from the
INCLUDE file.

If the specified macro is not found in the INCLUDE file, the * DELETE card
is ignored and a warning message printed.

INITIAL Control Card

The * INITIAL control card is used to initialize the INCLUDE file. The
format of the * INITIAL card is as follows:

1______ 8________ 16 _________________________

* INITIAL

An initialized INCLUDE file contains no macro names or text.

12-4 DE04

LIST Control Card

The * * LIST control card is used to output the text associated with a macro
name. The format of the * LIST card is as follows:

1______ 8________ 16___________________________

* LIST £ text -name]

where: text-name indicates the macro whose text is to be output.

If the text-name is omitted from the * LIST card, the text for all names
registered in the INCLUDE file is listed.

MODIFY Control Card

The * MODIFY control card is used to indicate the macro that is to be
modified by the * ALTER cards that follow. The format of the * MODIFY control
card is as fol lows:

1 8 16

* MODIFY text-name

where: text-name indicates the macro to be modified by the * ALTER cards.

If the text-name given on the * MODIFY card cannot be found in the INCLUDE file,
the * MODIFY card is ignored and a warning message printed.

The work file, WK, must be furnished when modifying the INCLUDE file.

SAVE Control Card

The * SAVE control card is used to copy the entire INCLUDE file to the file
specified by the file-code. The format of the * SAVE control card is as
fo11ows:

1_______ 8________ 16__________________________

* SAVE f i 1 e-code T, BCD]

The file is organized in the system standard format, and unless BCD is specified
as a parameter, the file is represented in the ASCII character set.

12-5 DE04

An INCLUDE file is saved as a series of control cards and macro text, as
fol lows:

8________ 16 _______

INITIAL
CREATE text-name-1

tex t-1

CREATE text-name-2

text-2

CREATE text-name-3

text-3

An INCLUDE file that has been saved, therefore, can be used as the file
identified by the file code IN to produce an INCLUDE file.

EXAMPLES

Examples that illustrate the creation and maintenance of an INCLUDE file
are included in this section. The first example illustrates the creation of the
INCLUDE file. In the next example, the text of several macros is modified.
Next, the INCLUDE file is saved, several more changes are made, and the file is
saved again. The first INCLUDE file that was saved first is then used in a PL/I
program.

Example 1 - Creation of an INCLUDE File

In this example, the INCLUDE file is initialized, and then three macros are
added.

1________ 8________ 16

Pl: PROCI;

$ PROGRAM SRCLIB
$ PRMFL . L, W, R, MY / 1 NC L
$ DATA 1 N
* INITIAL
* CREATE TEXT1

DCL XI FIXED;
DCL DI FIXED DECIMAL;
DCL Bl BIT(l);

* CREATE TEXT2

DCL A FIXED;
DCL B FIXED;
A=B*SQRT(B);
END;

* CREATE TEXTS
DCL El ENTRY(F1XED);
DCL E2 ENTRYCFIXED,FlXED)

$ ENDJOB

12-6 DEOU

Example. 2 - Modification of an INCLUDE File

In this example, line 2 of the macro TEXT1 is replaced and a ^INCLUDE
statement is inserted in the macro TEXT2 before line 3. Then the macros that
have been changed are listed. Note that, since this job involves modification
of the INCLUDE file, the work file, WK, must be included in the job.

1 ____ L. 16

$ PROGRAM SRCLIB
$ PRMFL . L,W,R,MY/ INCL
$ F 1 LE WK,AIR,10L
$ DATA 1 N
* MODIFY TEXT1
* ALTER 2,2

DCL Cl CHAR(3) ;
* MODIFY TEXT2
* ALTER 3

^INCLUDE TEXT3;
* LIST TEXT1
* LIST TEXT2
$ ENDJOB

Example 3 - Saving the INCLUDE File

In this example, the INCLUDE file MY-INC1 is saved as the file
by the file code XY; several experimental changes are made
including the deletion of a macro; and the new INCLUDE file MY-INC2
the file identified by the file code YZ.

i den t i f i ed
in the file,
i s saved as

16

$ PROGRAM
$ PRMFL
$ FILE
$ TAPE
$ TAPE
$ DATA
* SAVE
* LIST
* MODIFY
* ALTER
* DELETE
* SAVE
* LIST
$ ENDJOB

SRC LIB
. L,W, R,MY/ I NCL
WK,A3R,10L
XY,AID,, 99999,,MY-I NCI
YZ,A2D,,99999,,MY-INC2
I N
XY,BCD

TEXT1
lzl
TEXT3
YZ,BCD

12-7 DEOU

Example U - Use of a Saved INCLUDE File

In this example, the INCLUDE file.saved in the previous run is re-instated
and a program referencing the INCLUDE file given.

1________8________ 16 ________________

$ PROGRAM SRCLIB
$ PRMFL . L,W,R,MY/INCL
$ TAPE IN,AID,,99999,,MY-INC1
$ PL1 LIST
$ PRMFL .L,R,R,MY/INCL

P: PROC OPTIONS(MA IN);
^INCLUDE TEXT1;
XI = 1;
DI = 1;
^INCLUDE TEXT2;
Xl = 2;

END;
$ ENDJOB

12-8 DEOU

SECTION XIII

DEBUGGING PL/I PROGRAMS

When the execution of a PL/I program terminates abnormally, the execution
report produced can be used to obtain useful information about the state of the
program upon termination. This section gives general rules for interpreting an
execution report and then illustrates the use of some of these rules with an
example of a program that terminated on the occurrence of the ZERODIVIDE
condi tion.

MEMORY LAYOUT

The
Later i n

memory layout during
this section, the actual

the execution of a PL/I program
memory layout for an example is

is gi ven here,
d i agrammed.

i m i

If the low end of system storage nears
memory for system storage is requested
stack frame space is exhausted or system
activity is terminated with abort code PC.

the stack frames, then additional
from the operating system. When the
storage cannot be obtained, the

13-1 DEOU

ABNORMAL TERMINATION

When a program terminates abnormally, the reason for the termination is
indicated either by an abort code or by a message from a default ON unit.
Following this identification, an error trace-back is given, which indicates the
procedures that were active at the time the termination occurred. Following the
error trace-back, a memory dump is listed if the DUMP option is specified on the
$ EXECUTE control card.

Abort Codes

If the compilation or execution of a PL/I program terminates abnormally for
reasons not handled as conditions, an abort code is listed. Table 13-1 lists
the abort codes and gives, for each code, its meaning and the time at which it
can occur. If the code can occur during compilation, an X appears in that
column; if during execution, an X appears in the execution column.

Table 13-1. PL/I Abort Codes

OCCURS DURING 1

Code Mean i ng Compi1 at ion Execu t i on

PA Argument and parameter do not match. X

PC Core resource exhausted. Try extending
the core 1imi t.

X X

PE ERROR condition has occurred and user
did not supply ON-unit for the condition.

X

PL Fatal source program error. X

PX Compiler interface detected an unrecoverab1e
error. The system prints a brief comment on
the file P*.

X

SI Illegal control card on the file A*. X

S2 Illegal $ ALTER card on the file A*. X

S3 Illegal media code on the file A*. X

SU Illegal media code on the file S*. X

S5 Illegal binary card, other than type 5,
on the file S*.

X

S6 Invalid sequence number on the file S*. X

S7 Illegal COMDK format on the file S*. X

13-2 DEOU

ON Un i ts

Many exceptional conditions can be detected during the execution of a PL/I
program. The detection of an enabled condition causes the established ON unit
for that condition to be executed. If the user supplies an ON unit for the
handling of the condition when it is signalled, that ON unit is executed;
otherwise, the system ON unit is executed.

In general the system-supplied ON unit prints an identifying message of the
fo rm:

**** SIZE CONDITI ON(ONCODE = 703) OCCURRED.****

The message gives the condition name and number. The
assigned according to the following list:

Cond i t i on
Number

1 - 100
101 - 300
301 - 600
601 - 999

1000
1001 -

Support Routine

Math 1i brary
Record and stream I/O
I/O run-time support
PL/I opera tors
Signal statement
Not assigned

condition numbers are

Appendix I of this manual gives, for each ONCODE number, a more complete
description of the reasons for its occurrence. Following the printing of the
message, the system-supplied ON unit signals the ERROR condition, which prints
the error trace-back and returns to GCOS for the termination of the job.

Error Trace-Back

Following the line that identifies the reason for the abnormal termination
of the execution, an error trace-back is given. The error trace-back lists the
PROCEDURE blocks that were active at the time the execution terminated,
including any PROCEDURE or BEGIN blocks internally created by the compiler. The
PROCEDURE blocks are listed in the order in which they were activated, the first
being the PROCEDURE with the OPT IONS(MA IN) attribute and the last being the
system routine that was activated when the execution was terminated.

13-3 DEO^

For each block the following information is given:

ENTRY NAME The name of the procedure or block.

LINE # If the procedure was compiled with the SNUMBER option, the
line number in the source listing at which the ERROR
condition was signalled is given.

STATEMENT # If the procedure was compiled with the SNUMBER option, the
statement number within the line is given.

LOCATION The absolute address in memory of the instruction at which
either the ERROR condition was signalled or transfer was
made to the next block listed in the error trace-back.

OFFSET

STACK

The address, on the object listing, of LOCATION relative to
the entry point of the activated block.

The absolute address of the 1 oca t i on
frame assigned to the procedure or block.

of the stack

The error trace-back is very useful for determining the exact location of
the error that terminated the execution and for providing address information to
locate PL/1 variables. The rules for locating PL/1 variables are given in the
following paragraphs. Following these rules, a comprehensive example is given
that illustrates the use of an error trace-back.

Locating PL/I Variables in Memory

Rules for locating the following types of variables in memory are given in
this section:

EXTERNAL STATIC variables
EXTERNAL PROCEDURES
INTERNAL STATIC variables
LABELS
INTERNAL PROCEDURES
AUTOMAT IC variables
EXTERNAL PROCEDURE arguments
INTERNAL PROCEDURE arguments

Locating a memory address requires reference to several sections of the compiler
output listing. The options given on the $ PL1 control card for the compilation
determine the sections of the output listing that are printed. A detailed
description of the sections of the compiler output listing and the associated
options is given earlier, in the section on the "Compiler".

After the rules for locating the above items are given, a comprehensive
example illustrates the location of some PL/I variables in memory by applying
these rules to the listings produced from its compilation and execution.

13-U DEOU

EXTERNAL STATIC VARIABLES

To determine the location in memory of an EXTERNAL STATIC variable, proceed
as follows:

If the name of the variable exceeds six characters
character ’$’ or obtain the converted name from
and External Symbol section of the compiler output
listing is not available, convert the name according
rules given in Appendix F of this manual.

or contains the
the Storage Space
listing. If this
to the conversion

2. Locate the block common with the variable name (or converted variable
name) on the Loader Map. The location given to the right of the name
is the loaded location for the EXTERNAL STATIC variable. This
location will immediately follow the first external procedure in which
the variable occurs.

If the EXTERNAL STATIC variable is a structure, continue as follows to locate
the members:

3. Obtain the word offset (in octal) and bit offset (in decimal) for the
structure member from the Symbol Table section of the compiler output
1i st i ng.

4. Add the word and bit offset to the origin obtained in Step 2 to locate
the member.

EXTERNAL PROCEDURES

To determine the location
fo11ows:

in memory of an EXTERNAL PROCEDURE, proceed as

1* If the name of the EXTERNAL PROCEDURE exceeds six characters or
contains the character ’$’ or obtain the converted name from the
Storage Space and External Symbol section of the compiler output
listing. If this listing is not available, convert the name according
to the conversion rules given in Appendix F of this manual.

2. Locate the name or converted name on the Loader Map. The location
given at the left margin on the Loader Map is the loaded location for
the origin of the procedure, including INTERNAL STATIC storage. The
location to the right of the name is the loaded location for the entry
point to the procedure.

To determine the location of a statement within an EXTERNAL PROCEDURE, continue
as follows:

3. Locate the relative location of the statement by consulting the Object
Map section of the compiler output listing.

4. Add the relative location for the statement to the procedure origin
obtained in Step 2.

13-5 DE04

When more than one statement is given on a line in the source program, the
relative location of the statement can be obtained from the Object. Program
section of the compiler output listing. The Object Program Listing is
annotated for convenient interpretation. The relative location of the
instruction is given at the left and the cor respondence to the source listing in
terms of statement and line number is given on the right of the object code
list.

INTERNAL STATIC VARIABLES

To determine the location in memory of an INTERNAL STATIC variable, proceed
as foilows:

1. Locate the name of the INTERNAL STATIC variable in the Symbol Table
section of the compiler output listing to obtain the location of the
variable relative to the origin of the procedure.

2. Locate the procedure origin in the Loader Map by following the rules
given earlier in this section for locating an external procedure.

3. Add the relative location of the INTERNAL STATIC variable to the
procedure origin to obtain the location in memory of the variable.

An INTERNAL STATIC variable is assigned a location in memory only if it is
referenced (either explicitly or because an item based on it is referenced).
Therefore, INTERNAL STATIC variables that are defined but not referenced do not
have a relative location in the Symbol Table section.

LABELS

To determine the location in memory of a LABEL CONSTANT when the Object
Program section of the compiler output listing is available, proceed as follows:

1. Locate the label in the Object Program section of the compiler output
listing to obtain the location of the label relative to the procedure
origin.

2. Locate the procedure origin in the Loader Map by following the rules
given earlier in this section for locating an external procedure.

3. Add the relative location of the label to the procedure origin to
obtain the location in memory of the instruction so labeled.

If the Object Program section of the compiler output listing is not
available, proceed as follows:

Locate the label or label array in the Symbol Table section of the
compiler output listing under the heading ’’NAMES DECLARED BY EXPLICIT
CONTEXT” to obtain the relative location within the procedure.

Locate the procedure origin from the Loader Map by following the rules
given earlier in this section for locating an external procedure.

If the label is unsubscr i pted,
to the procedure origin to
instruction so labeled.

add the relative location of the label
obtain the location in memory of the

13-6 DEOL

If the label is subsc r i pted and the lower bound of the label array is
zero, add the relative location of the label array to the procedure
origin to obtain the transfer vector, then add the subscript value to
the origin of the transfer vector to obtain the transfer address for
the instruction associated with the subscripted label. If the lower
bound of the label array is other than zero, a further adjustment must
be made.

INTERNAL PROCEDURES

To locate an INTERNAL PROCEDURE, proceed as follows:

1. Locate the relative location of the INTERNAL PROCEDURE in the Symbol
Table section of the compiler output listing under the heading "NAMES
DECLARED BY EXPLICIT CONTEXT".

2. Locate the origin of the external procedure in the Loader Map
following the rules given earlier in this section for locating
external procedures.

3. Add the relative location of the internal procedure to the procedure
origin of the external procedure to obtain the location in memory for
the internal procedure.

AUTOMATIC VARIABLES

To locate the relative 1ocat ion of an AUTOMATIC variable, p roceed as
fo11ows:

1. Locate the relative location of the AUTOMATIC variable in the Symbol
Table section of the compiler output listing.

2. Locate the origin of the stack frame for the current invocation of the
procedure from the error trace-back.

3. Add the relative location of the AUTOMATIC variable to the stack frame
origin to obtain the location in memory of the AUTOMATIC variable.

If the error trace-back is not available, the stack frame for the current
invocation of the procedure can be obtained by following stack frame linkages.
The stack frame linkages can be followed either from the first stack frame in a
forward direction or from the last stack frame in a backward direction. If a
procedure has several active invocations, the current active invocation can be
obtained most efficiently by beginning from the last stack frame and working
backwards.

13-7 DE04

The format of the stack frame is as follows:

0_______________________18

0 AP LP

1 OC EL

2 CS SF

3 SB TO

4 __ Temporary Storage for __
Operators

5

6 First word of AUTOMATIC Storage

Last word of AUTOMATIC Storage

where: AP

LP

OC

EL

CS

SF

is the location of the calling sequence.

is the location of call + 1.

is the offset relative to stack frame of the enabled
cond i t i on chai n.

is the location of the entry + 1.

is the location of the stack frame header for caller
(index register SP = 2).

is the location of the stack frame header for the last
invocation of the enclosing procedure.

SB

TO

is the last
temporary).

location in this

i s
extens ion).

locat ion used

stack frame (including

for temporary (frame

For a more detailed explanation of the stack frame format, refer to Detailed
Stack Frame Format, later in this section.

13-8 DEOU

To follow stack frame linkages in a forward direction, proceed as follows:

1. Locate the
word 57 in

address of the first
the memory dump.

stack frame from the upper half of

Examine the lower half of word 1 (EL) to obtain the location+1 of the
entry point of the associated procedure. Compare this address+1 with
the address obtained on the Loader Map for the entry to the procedure
in question. If the addresses agree, the stack frame for the
procedure is located. The stack frame for the current invocation of
the procedure is the last stack frame located for the procedure using
this method.

If the addresses do not agree, pick up the location of the next stack
frame from the first half of word 3 (SB). If this address is not an
even address, round up to an even address.

4. Return to Step 2.

To follow the stack frame linkages in a
fo11ows:

backward direction, proceed as

1. Locate the address of the last stack frame from index register 2. If
the abnormal termination occurred within a GFRC routine, however,
index register 2 no longer has the last stack frame and the stack
frame linkages must be followed in a forward direction.

2. Compare the addresses as in Step 2 for forward linking.

3. If the addresses do not agree, pick up the location of
stack frame from the first half of word 2 (CS).

the preceding

The address obtained from the stack frame field EL can be used to obtain
the name of the external procedure from the memory dump. Consider the sequence
of instructions preceding the procedure entry for a procedure named CALCULATE.

e-4 ASCII CALC
e-3 ASCII ULAT
e-2 ASCII E
e-1 ZERO number of parameters, number of characters in name (= 9)
e TSXO .P0090 (external entry operator)
e+1 ZERO 0, number of words of automatic storage used
e+2 instructions for first executable statement

13-9 DE04

The field EL in the stack frame contains the address e+1. Subtracting 2 from
the address in EL gives the location in which the number of characters in the
name is stored. The number of characters in the name determines the number of
words used to store the name, and thus the name of the external procedure can be
ob ta i ned.

EXTERNAL PROCEDURE ARGUMENTS

To determi ne the location i n memory of an argument of an EXTERNAL
PROCEDURE, proceed as foilows:

1. Locate the relative location of the argument list within the stack
frame of the calling procedure. This can be done in one of two ways,
depending on the availability of the object program listing.

If the Object Program section of the
calling program is available, the
from the generated code as follows:

compi1 er
re 1 at i ve

output listing for the
location can be obtained

EAX6
TSXLP

n,SP
procedure

The number n is the relative location
frame of the calling procedure for
procedure. Add the relative location
calling procedure.

(in decimal) within the stack
the argument list for the called
to the stack frame origin of the

If the Object Program listing is not available, information can be
obtained from a memory dump. The upper half of word 0 of the stack
frame of the called procedure gives the location of the argument list
within the stack frame of the calling procedure.

2. The format of the argument list is described in detail earlier, in the
Section on ’’Linking PL/I and Other Languages”. Given the origin of
the argument list, the description of Section on "Linking PL/I and
Other Languages” gives the information necessary to locate any
argument within that list.

The location of an argument of an external procedure is illustrated in the
examples that conclude this section.

13-10 DE04

INTERNAL PROCEDURE ARGUMENTS

To determine the location in memory of an argument of an INTERNAL
PROCEDURE, consult the Storage and External Symbol section of the compiler
output listing to see whether or not the INTERNAL PROCEDURE shares the stack
frame of the enclosing procedure. Then proceed as follows:

1. If a stack frame is created when the internal procedure is called,
then the rules for locating an argument are identical to the rules for
locating an argument of an external procedure.

2. However, if the stack frame is shared, the location within the stack
frame of the calling procedure for the argument list can be obtained
in one of two ways, depending on the availability of the Object
Program listing.

If the Object Program section
calling procedure is available,
first instructions generated
namely:

of the compiler output listing for the
the location can be obtained from the
for a shared frame internal procedure,

STXAP n,SP
SXLLP n,SP

The number n is the relative decimal location in the stack frame of
the enclosing procedure for the word whose upper half contains the
loaded location of the argument list of the called procedure.

If the Object Program Listing is not available for the calling
procedure, the above instructions can be located by consulting the
Object Program Map Listing. The source line in the map for the
internal procedure locates the above instructions. The loaded location
of these instructions, and hence the value of n, can then be obtained
from a memory dump.

Detailed Stack Frame Format

A detailed diagram of the stack frame format is given in Figure 13-1. The
relationship of the stack frame to the argument list, calling sequence, and
enabled condition names is also illustrated in this figure.

13-11 DE04

ST
A

CK
 FRA

M
E

tn
T5
P
O

0) £
£
d £
£ -H

0)

tn

u□

U)

o cd

P
0)

O
rd
P
d

P
<0

U
o

P
O

nJ
P
0)

£
0)

d
P
o

£
o

o d
d

o

Z
O
x
H
X

z
c
u

tx
H
Z
W

£
o

•H
X
-rd
nJ
£
o
u

0)
X

o

£
o

-H
X
(0
o
o

0)
x
x

ii

z
o

tn
£

tnp

0)

o tn

£
o

d
din

(00)£

d
o

o

0)tn
0)

tn

£tn

<xJoo

0)
rd

0)

CD0)
tn

d
o

(Dtn
P o0)

tn

d

o tn tn
o

00) tn
£<D0)

0) utn <d o
oj

d
o tn

p 0)
O dtn

d
d tn

tnd0

0)
tn

tno

c0) <D0)0) 0) 0)CD <u o
tn

X
d 0)ii

0)
O tn

tnM

c
o

d
o

p
d

C
0)

d
o

o
o

£
o

£
o

0)
p

d
o

p
CD

d
u

p

d
o
o

o
d

£
o

p
0)

p
o

£
o

d
p
o

d
o
o

d
p
0)

tn
tn

a
o

a)
o

u
d

d
o
o

c
d

p
(D

d
o
o

0)
P

£
0)

£
o
o

p
0)

c
d
p

p
o

p
d

d
<D
P
d

£
o

d
o
O

d
p
O

£
d
u

£
d
o

o
£

£
o

u
d

u
o

d
o
o

£
p
d

d
£
0)

o
tn

d
o
o

£
0)

tn
o

d
>

o
d
d

X
0)
£ cq

tn

tn
p

d
d d

u
o

c
0)

£
o
p
X

tn

w
p

tn
p

X
o

tn
p
O

cd
tn

d
£
O

P
o
X

0)
£
d
P

£
0)

0)
£

tn
0)
£
d
p

O
tn

p
O
£
0)
£

tn

o

p
0)
£dx

CD
O
O
P
a, tn

• o
£
0) nJ

P
O

£
o
rd P
X 0)

0)

o o

N
L o o

CN TR N
E FP

x

0)
£
d
c

M-4

O nJ X
d

-H
d

rH
P X O C4 X p tn
0) -H tn d d tn d

14-1 C tn c > -H X
tn d p o 0)
£ 0) -p 0) X c
d £ -p <D r~4 'H •H
P o u 0) X •H C d
X d > X X ^3 X

0) p 0) -rd o
d X! d £ 4-> C d c

X x: d d •H O 0)
4-1 o C >-1 c X X
0 0 0) >1-rd 0 tn X

1 > c C P p d •H
c •Hl 0 X X C X £ M
0 c •H C 0 0 x •rd Z

•H 0 -p -p 0) •H
-P -H ■p •rd 0) c X X ^*1 M

d -P Ctt) tn X o d u P o
u o c C 4-4 X -rd 0 -rd nj X X
o d 0) 0 Xd 0) X 0X0) £

rP P r-4 U 0 C -rd X £X 0) 0)
1) nJ X d

<D tn (D (D 0) c 0) P d X X
x: c X X X X 0 X o c tn d
-P -H 4-J -P 4-J x o X X Q) d >

ii II II II 0
0) P

cd XI « P4 X 0)
H z z [p N

13-12 DE04

Fi
gu

re
 13

-1
= De

ta
ile

d S
ta

ck
 Fra

m
e D

ia
gr

am

The PL/I condition signalling mechanism makes use of several external
variables which may be of interest. Their converted names and uses are listed
in Table 13-2. Their location in memory may be determined from the load map
where their Block Common items usually first appear in relation to module ZLKV.
These Block Commons will contain values related to the most recently signalled
condition to which each is pertinent.

Table 13-2. Frequently-Used Block Common I terns

Name Data Type Value

OCODE FIXED BINARY the oncode.

90NDEX FIXED BINARY index in 60URCE of the offending
character.

6OURCE CHARACTER(256)
VARYING

bad string causing conversion
error.

40FILE CHARACTERC32)
VARYING

file name for which the CONVERSION,
NAME, ENDFILE, TRANSMIT, RECORD,
KEY, or UNDEFINEDFILE condition has
been s i gnalied.

3ONLOC CHARACTERC 256)
VARYING

a character string containing the
name of the faulting procedure.

701 ELD CHARACTERC256)
VARYING

the bad identifier in the GET DATA
statement.

30NKEY CHARACTERC256)
VARY 1 NG

the character string containing the
key of the record for which the
ENDFILE, TRANSMIT, or ONKEY condition
has been s i gnal1ed.

EXAMPLE

The following example is intended to illustrate the output resulting from
an abnormal termination of a PL/I program. The computations being performed in
the program are of no interest, except that the third execution of P2A is
intended to abort the third time through to provide the execution report.

13-13 DE04

The job consists of the compilation of four separate
and the execution of the results of the compilations,
control cards and input cards for this job.

external procedures
Figure 13-2 gives the

$ SNUMB JOB1U
$ IDENT
$ OPTION PL1
$ PL1 LIST,SNUMBER
P: PROC OPTIONS(MAIN);

DCL Pl ENTRYCFIXED);
DCL P2 ENTRYCFIXED,FIXED);
DCL (X1,X2,X3) FIXED;
DO XI = 1 BY 1 TO 5;

X2 = Xl**2;
CALL P1(X2);
END;

DO X3 = 2 BY 2 TO 50;
X2 = X3 - 6;
CALL P2(X2,X3); /* ABORTS THIRD TIME THROUGH */
END;

END;
$ PL1 LIST
Pl: PROC(A);

DCL (A,XU) FIXED;
XU = SQRT(A);
PUT LIST(XU,A);
PUT SKI P;

END;
$ PL1 LIST,SNUMBER
P2: PR0C(A,B);

DCL (A,B,X5) FIXED;
DCL P2A ENTRYCFIXED,FIXED);
X5 = A**2;
CALL P2A(X5,B);

END;
$ PL1 LIST,SNUMBER
P2A: PR0C(A,B);

DCL (A,B,X6) FIXED;
X6 = (B * 128) / A; /* ABORTS ON ZERODIVIDE */
PUT LIST(A,B,X6);
PUT SKIP;

END;
$ EXECUTE DUMP
$ LIMITS 10,U0K,-2K
$ ENDJOB
* * * EOF

Figure 13-2. Deck Setup for Example

13-14 DEOU

For each external procedure, the option LIST is specified on the $ PL1
control card. Therefore, the compiler output listing for each procedure
contains the following sections:

Option listing
Source Program listing
Symbol Table listing
Storage and External Symbol
Object Program Map listing
Object Program listing

1i s t i ng

Figure 13-3 contains the compiler output listing, composed of these sections,
for the external procedure P2A. Each of the other external procedures produces
the same logical sections of the compiler output listing. The listing, as it
appears in Figure 13-3, is somewhat compressed, but all the information is
retained. This listing is used later in the section to locate some variables in
memory.

13-15 DE04

UJ
O

ru

UJ
o
<r
CL

CO

o
•—< >-
t— t— ct
CL »—< in
0 2 ZD O UJ or V CD

u_ >— CZ) C. z h- >— >-(XLL>— > < u 5 ZD LU
O (/)»-t«I>-</)_J</)<CXCLUJ»— UJO2IX

_j _i ST co _j <r n <-> O oo co a uj oo x

<Z) OOOOOOOOO
►- 2222122227?

(D
k_
□
bO

13-16 DE04

ID
EN

TI
FI

ER

O
FF

SE
T LOC STDR

A
3E

 CLA
SS

D

A
TA

 TYP
E

A
TT

R
IB

U
TE

S AN
D RE

FE
R

EN
C

ES

LU

LU

LU
ru
i—«
OO

13-17 DE04

Fi
gu

re
 13

-3
 (co

nt
). Co

m
pi

le
r O

ut
pu

t Li
st

in
g f

or
 Exa

m
pl

e

<r
rxj
CL

ZD
O
cz>

<Z)
CD
X
ex
I

on
UJ
c>

5

CO

13-18 DE04

Fi
gu

re
 13-

3 (c
on

t).
 Com

pi
le

r O
ut

pu
t Li

st
in

g fo
r Ex

am
pl

e

be
g

in
 PRO

C
ED

U
R

E 'P
2A

*
EN

TR
Y TO

 ‘P2
A»

ST

A
TE

M
EN

T 1
O

N
 LIN

E
C

0C
04

7
12

0 06
2 10

1 04
0

C
O
O

P2
A

C
0C

05
0

03
00

02
 000

00
3

00
0

ZE
R

O

2,
3

00
00

51

03
30

03
 700

3 00

03
0

TS
XB

P
.P

00
90

EX

T*
EN

TR
Y

ct cl a.
m C/5 C/5 ci

* x x c/>
o on on x

CL <X
O CO CD
or n x x
LU >— t— C
N I/) W LU

f\j fxj nj
fXJ »- T~ «—
o
o o o o
O CT CVi O
O in <■ <xj
O ?<- O

m r\j r\i r^-
nj nj oj o

o o (~5 c?
0 0 0)0

(xj m m
in m b- lx
O CJ O O
O O O O
C O O O
o Ct O O

♦ ♦
*

13-19 DE04

Fi
gu

re
 13

-3
 (co

nt
). Co

m
pi

le
r O

ut
pu

t Li
st

in
g f

or
 Exa

m
pl

e

•—<

□ (\JKl<O>T<^’-Of\Jr-O(\jCO
o «— oooo<-mo<-rnoT- oo
ooooooooooonooo
O O u"> O <— O T- o «— <— O T— O’- <—
k> m m r\J O Ki<xirxjOcxjr\JO(XJOO
or*. fXJsONN^ONrxjONO r-
OOC«J-O»-O»-O O fXJ o o o o
0r\j0<-00000 o o o o o o
o o c o o r- o co o o o o o o
oorucor-ooooco coo
r>j o «— c or^oot^oo r-. o r- o
oosroor^-cooooo o o *-

OOOOOOOOOOOOOOO
^nooobnooorcoomo^K)
OOOOOOOOOOOOOOO

OOOOOOOO o Q-
ooooocoo o
OOCOOJOOO o o

z
UJ

UJ
o

♦
«

13-20 DEOU

Figure 13-U contains the relevant portion of the Loader Map. This listing
is used later in the section to obtain the loaded locations for the origin and
entry points of the external procedures.

13-21 DEOU

X

UJ
cd
«x
Q.

z
o
►—<

u»
o

O'

2
LU

UJ
CD

m
o
o
r-
in
o

in
oo
o
a:
CD

ru
v—
CM
in
o

X
3
</)
ZJ
CD

ru

co
o
00
o

z
LU
0.
o

co
O

co
UJ
-J
»—<

CD
r—
Cl
E
x

UJ

Q.
(U

k-
(D

(U
O

0)
k.
ZJ
bO

13-2 2 DE04

Figure 13-5 contains the execution report produced upon the abnormal
termination of the program. As planned, the termination occurred on the third
execution of the external procedure P2A.

First, the system ON unit for ZERODIVIDE prints an identifying message,
then signals the ERROR condition. The system ON unit for ERROR prints the error
trace-back and returns control to GCOS. Since the DUMP option is given on the
$ EXECUTE control card for the run, a memory dump is produced. The memory dump
in Figure 13-4 has been edited for inclusion in this manual so that only the
relevant portions appear.

Following the memory dump, the information output by the program on
SYSPRINT is listed (see last page of Figure 13-5).

13-23 DE04

13-24 DE04

Fi
gu

re
 13

-5
. Exe

cu
tio

n R
ep

or
t fo

r Ex
am

pl
e

r^-ruorururuf^-ruooo
in O in «— v- i— Or-OOoJ"
OOi— OOOOOOOO
<i-r-0'0000i-00
ooinhoCTCTCTinoo<-
o o i— ru o O ru r- O o
r~ <• i— oi— r-rur-ooo
inininoi— OOOinO<
Oi-r~OOOOO<-OO
<— octocoocdcdoo OOOOOOOOOO<-
Or— i— CDOOOOOOO

ru r\j r~ ru <— <■ o o o r-
Or— CTOO-'J’OO

o o oooooooo
ru i- oooooooo
<■ rxi CTinruruO^tOO
r_ r\j ruf^-000000
ru o ruOi— moooo
ru o OruOOru<-OO
o o oooomooo
CD O OOOOOOOO o o ooooo<oo
o o oooooooo

OOi-OO<-r-rurUi-O
ooruooi—Oi—oru<-
OOOOi— OOOOOO
0000000^-000
oooo<-oCTruoo<-
OOOOOOruruOOO
ooocxjooctoooo
OOOruoCTOOOO<-
ooo<o<ooooo
CTOOOOOOOOOO OOi— OOOOOOi— <■
ooooooooooo

cuoooruoruooi-rurx-
OO-xtOi— Oi— OOCTi— O
OOOOOOOOOr-OO
r-Oi— or-CT^— i— i— ini— o
inoorumCTruOOr-ruCT
oo»— o<r'-rurx-r'-oruru
OOru<Oruo<-<-r^-om
r-ooruoinor-i— <■ o r—
oooCTOOor^-r-ooo
ooooooor-i-ooo OOruOOOOOOin O O
OOi-OOOOOOCTOO

ru ru
o
o
o

o
o
o
o
o
o

ru
1—
o
o
ru
o
ru
o
o
o
o

ru
o
o
o
o
o
o
o
o
<—
o

o
o
o
o
o
o
o
o

ru O ru
o
o
in
ru
o
o
o
o
o

o
o
o
ct
o
o
ru
o
o
o

ct
o
o
in
ct
ru
o
o
ru
ru
o

o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

ru o

o
o
o
o
o
in
o
o
o

o
o
o
ru
ru
o
o
o

o
o
o
o
o

in
o
ru
o
o

ru

o
o
o
o

ru ru
ct
o
ct
ru
o
ru
in
in
o
o
o

ct
ru
o
o
o
o
c
o
o
o
o
o

o
o
o
o

o
o
o
o
C3
o
o
c
o
o
o
o

o
o
o
ct
ru
i—
o
o
o
o
o

ru ru

in
o
o

ru ru
o
o
ct
ru
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

o
o
ct
o
o
o
o
o
o
o

o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
CT
in
o

o
ru
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

ru
o
o
o
o
o
ru
o
o
o
o
o

ru
1—
o
o
CT
o
o
o
o
o
o

o
o
o
o

o
o
o
o

o
in
o
o
o

ru
o
o
1—
o
o
in

ru
CT
o
o
CT
ru
i—
o
o
o
o
o

ru
o
o
ru
o
o
o
o
o
o
o

o
o
o
ru
o
CT
o
o
a
o
o

o
o
o
o

in
o
ru
o
o

ru
o
CT
CT
o
o
o
o
o
o

ru
CT
o
o
o
CT
ru
ru
o
o
o

o
o
o
o
o
o
ru
o
1—
o
o
o

o o <M
o
o
o
o
in

o
o
o
CT
ru
ru
o
o
o
o
o

ru
o
o
o
o
o
o
o
o
o
o
o

o
o
o

o
o
o
o
o

o
o
o

ru
i—
o
o
ru
o
o
o
o
o
o
o

o
o
o
CT
ru

o
o
o
o
o

o
o
nj
o
o
o
o
o
o
in
o
in

o
o
o
o
o
o
o

CT o
r—
o
o
o
o
o
o
o
o
o

O T— O
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o o o
o oo
o o o
o o o

ru T—
o
o
ru
o
o
i—
o
o
o
o

ru

o
o
o
o
CT
o
o
o
o

CT o
o
o
o
o
o

ru
r—
o
r—
ru
ru
o
o
o
o
o
o

o
o
o

CT
o
o
in
CT
ru
o
o
ru
ru
o

CT
CT
o
o
o
o
o
o
o
o
CT
o

in
o
o
o
o
o
ru
o
o
o
o
o

o
o
o
o
o
CT
o
o
o
o

v- ru O o
o O ST O
CT T- O o
O O CT o
o o o o
o o
O ru in v-
ru O <r in
ru «— r- o
O O <— ru
O O in O
o o <- o

ru ru rxj ru
o o o o o
o o o o o
CT ru ru O in
oooor^-
O ru o ru <r
Or-t-Or-
o o o o o
o o o o o
o o o o o
o o o o o

O O ru O
o o <-
o o o o
o o o o
r— -U- O CT
r- o o o
O O v- o
^•<■00
0000
ru O O O
o o o
0000

ru ru <• ru o O »—
r- t-Ot-O'4-t-
0000000
O ’i— o o o o o
CT CT CT in o o
o nj r- o o o
h- O CT O O O o
in o ru ru o <■ O
o 0 r- o o o o
o o r- o o o o
o o r- o o o
o o r- o o o o

T- CTO <- O
O O O ru O
00000
00000
00000
00000
o o o o
O O O in o
0 0 0^-0
O O O O in
00000
00000

o ct o o ru
^rCTOinr—
00000
O O O r- O

O o in in
OOOT--J-
O in o r- ru

O in ru
O in o O O
o o o o
'j- O O in O
ooo*-o

OOCTr-ruruoru
OOOCTi-O-4-r-
oooooruoo
Or- inOOOOCT
inoCTruinin-u-CT
r-r^ruor-ino<r
r^-ruorjr-ruoo
ruoooi— O u c
CTinoOO-J-OO
OCTruooor-o
OOt-OOOCTO
oo-uroooi—o

in ru r— ru ru
OOOOOr-<r-
ru O r- o O O O
O r- in o in o O
O O o O in in
ooi—oor^r-
o r- ct o in ru o
<—inoonj<—r—
ru o r— o O o o
O O fv. o o o o
o r- in o o o O
0000000

r- ru <r
O V- o
000
000
I— CT <—
«— -n r--
ru o r-
o <— tn
o o r-
o o r-
o o r-
o o r-

000
<r O

000
000
U U M
000
o <- <r
st sO rj
O O CT
000
U (Xi o
O r- O

ru O O o O
1-0000
00000
o <- 1- o o
r-ooCT<—

in ru o o
in in ru ru <r
o o r~ <r o
O O 1— o nj
00000
00000

^j-oooo^rr-ruo
ruOOOOOinom
r-OOOOOOOr-
oooooo>i-!-r-
i— OOOOOOsOin
1-OOOOOOOr-
i— ru<rOOOr~<r^-
1— r-r\jOOOininin
1-1-OOOOOi-r-
rur-rv-ooOi-OCT
nji— 1— 000'0'00
T-1— r-OOOOr-r-

O O o ru o
000000
O O 1- o o o
000000
o o o ct ct
ooooor-
o o o ct o r-
o 1— o m ru o
O in O in r- o
O o o o rv. o
o o o o r- o
o o o o r- o

ru ru r- r- ru
r—T—Or*njr—
0 0 0 0 1-0o 1— O r- ru r-
in ru ct ru ru in
r^- ru ru ru 1—
o o 1— o 1— o
ru o o 1— ru o
0 0 0-4-1-0
o o o ru ct o
o o o o ru o
0 0 0 0 1—0

1— ruco-j-r-r^rururu-joru
-j-oo-roooi— i— 1- ru o i—
ruOOOOOOOOOi-OO
or-ooooooo 0000
Otro^OCTCTCTinini-Ou
ooooorururur-oi— or-
inOOOruCTt— CCTOi-O-T
or-osrooo»-T-i-!-oo
ruOOOOOOOOOi-OO
ooooooooooruoo
oooruooooooruoo
0001-0000001-00

O ru vT O O
0 1-000
00000
1--0 0 1-1-
O ru ru C Q

o o r~
(\i o r- u u OOi-i—r-
in o o r- r-.
CTOOr-i-
00000
00000

OOOi-oOCTorui-rurui-o
njOO-TOOf^-oOCTi-i— ruru
1-000 00 <-01—00001—
CTOOOOOOOinO'O'OOCT
ruOOOOOOo<-CTrumoru
1-00000001- o o r- o i-
i-ruoooCCT-j-oi-orur-i-
CTini_)OOO<-in'0Oi-i-inCT
1— GJ CD O CD CD < —f r— O CD CD tn 1—
CTOOOOOOOOOOOOCT
ruruoocooo-rooooru
1-1-000000000001-

OOOOC1— Ooruor-CT
o i— -rooCTOoi—cmo
oinooooooooruo
OOCTOOuDOi— oor-in
OO'OOinCTCToinOvor-
OOi-r^r^-ruor-r-o<-<-
O o in i— oruor-ooi-o
Ur- <-inruoruofxjLJOO
Oini— O-XO-tr-OOi— o
OOi-ruOOOr-OOi-O
OOinOOOOOOCDCTO
OOr-OOOOOOOsO<

ru ru cu r- o o ru
1-1-1-onuOi-
0 0 0 0 1-00
O UD O 'O Ct CD O
in in ct ct C n
N < (\1 r- o <
r~or-.rui-cr-
1— i— O O CT O O
CD O O n 1- O O
O O O O CT O O
O O o O) ru O O
0 0 0 0 1-00

CT
o
o
o
o
ru

CDr—-
Cl
E
co
X

LU

L.
o

4-»
o
Q.
CD

QC

C
o

ZJ
o
QJ
X

L±J

OOOOO
i- c\i n u in

o oo o o o o c
ON-Oi— ruCT<rin
1— i— ru ru ru ru ru ru
OOOOOOOO
oooooooo
oooooooo

C OOQOOOOOO
'OfLOi-NCT'Jin'OS.
rurufnmCTCTCTCTCTm
ocoooooooo
0000000coo
0000000000

*
0000000
ru ct <■ in o r- O
<■<•<■<•<■<• in
o o o o o o a
0000000
0000000

oooooooo
1— ruCT^tnor^o
inininininmin'O
OOOOOOOO
oooooooo
oooooooo

000000
1— ru ct < in ud
0 0'0'0'0'0
o o o o c o
000000
000000

13-25 DEOa

OOOOOOOOOr-O
ooooooooooo
ooooruoooooo
ooooooooooo
OOOOOOOOOOO
ooooooooooo
oor^-oi^-ooooor^
OOruO'J-OOCJruOK)
OOr-OrxjOOOOO'J-
oomomonoruOt-
OOOOOOOOr-OO
ooooooooooo

o oooo^-r^-oooo
O OOOOr-r^OOOrj
o ooooor^oor-o
o ooooor-r^r^orxj
O OOOOOr-OOmO
O OOOOOr— O'OOfXj
<■ r<-ooooo<xi<xir^-o
rxj NONOONf^MOnj
m r<.oooo*—T-«-r-o
o r-oruoomoorMPj O r*-O'0OOmOOK1O
o r^ooooooorxjfxj

ooooow-sj-oosro
O OOOOOOOOOru
O OOOOO«-QOCXJO
O OOOOOOOOO0J
O OOOOOruOO-^O
O OOOOOfXJOO-J-rxj

OfCKIOOOOOOO
O Lnr^-xOOOxJ-OOrufXj
sO r\j »— T- O o <— O O o o

mmmooxyoorurxj
OinmmOOinOOOo
O OOOOOOOOrxjfXj

O OOOOOOr-w-OO
O OOOOOOOOOCXJ
O OOOrcOOOOOO
O OOOr^OOOOOrxj
O OOOLAOOOOOO
O OOOOOOOOOru
ru OOOOOOt-r-OO
o omooN'io^r^-Ofxj
O orxjOmmocxjruoo
r- OhnOK)(\JOOOO(Xj
OO mOtr»OOOOOO
OOOOOOOOOOru

corxjoorxjooooo
OOOOO'J-OOOOCM
ooooooooooo
O OOOOOO<"\irsjOf\j
OOOOOOOOOOhQ
OOOOOOOOOOfXj
<- OOOOOOf^mOO
O OOOmOOOOOrxj
O O o o r\j O O fXJ O in
<r- OOOmOOfXJ'XJO-^-
oooomoooooo
OOOOOOOrxjf\JO<j

o ooo<rooooor-
O (■XJO-J-OOOOOON'I
o -j-OK'ir^ooooom
o vjomr^oooooo
O LnOmrxjOOOOOr-
o OOOOOOOOOrxj
o -sj-oooruoooofn
O mo-xj-omorurxjoo
O <romorcoooor\j
■r- 'j-omooooooo
o momoooooom
o ooooooooor-

13-26 DE04

Fi
gu

re
 13-

5 (c
on

t).
 Exec

ut
io

n R
ep

or
t fo

r Ex
am

pl
e

Gross Memory Layout for the Example

The Loader Map, given in Figure 13-3, lists the loaded locations of the
user-defined external procedures and support system routines. From this
information, the gross memory layout for the job can be diagrammed, as follows:

S1ave Prefix

External Procedure P

External Procedure Pl

External Procedure P2

External Procedure P2A

PL/I Builtin Functions,
Operators, and Routines

PL/I Automatic Storage

System Storage

102

143 Entry Poi nt to P
226

244 Entry Point to Pl

422

456 Entry Point to P2

510

561 Entry Point to P2A

642

53120

Error Trace-Back for the Example

The error trace-back for this example (Figure 13-4) indicates that the
external procedures P, P2, and P2A were active at the time the ZERODIVIDE
condition was signalled. The system routine PL1__S I GNAL__, the last routine
executed, handled the condition.

Since the external procedures P, P2, and P2A were compiled with the SNUMBER
option, the line and statement number currently being executed are given in. the
error trace-back. Line 11 in the external procedure P is the call to P2; line 5
in the external procedure P2 is the call to P2A; and line 3 in the external
procedure P2A, as can be seen in the Source Program section of the compiler
output listing in Figure 13-3, is the calculation that caused the ZERODIVIDE
condition to be signalled.

13-27 DE04

Locating an AUTOMATIC Variable

Consider the location of the variable X6 in the external procedure P2A. X6
is an AUTOMATIC variable, so the rules for locating an AUTOMATIC variable are
applied, as follows:

1. The relative location of the variable X6 in the Symbol
of Figure 13-3 is 000006.

Table listing

2. The origin of the stack frame for the current invocation of P2A from
the error trace-back is 053154.

3. The location of the AUTOMATIC variable X6 in memory is then:

053154
+ 000006

053162

Examination of the dump of Figure 13-5 indicates that location 053162 contains
the value 000000000001. Note that this value is meaningless because X6 was not
evaluated (and stored) when the ZERODIVIDE condition was signalled. Since X6 is
an AUTOMATIC variable, its space may be otherwise used between calls to P2A.

13-28 DE04

Current Stack Frames for the Example

If the error trace-back for this example were not available, the stack
frame, for an. externa] procedure could be located by either of the methods
described earlier in this section. If the forward method is applied, the
location of the first stack frame is obtained from the upper half of word 37 and
the results of following the links can be diagrammed, as follows:

53120 1225 1223

0 144

0 0

53140 53140

Stack Frame for P

53140 53132 220

0 457

53120 0

53154 53154

Stack Frame for P2

53154 53150 506

0 562

53140 0

53247 53236

Stack Frame for P2A

13-29 DE04

Note that the lower half of word 1 contains the entry + 1 to the associated
procedure. Consider the stack frame for P2A. The lower half of word 1 contains
562. The entry to P2A can be obtained from the Loader Map and is found to be
561. Therefore, in the absence of other information, the procedure associated
with the stack frame can be determined in this way.

Locating an Argument List

Consider the location of the argument list for the external procedure P2A.
The rules for locating an external procedure argument are applied, as follows:

1. Suppose that the Object Program Listing for the calling procedure, P2,
is not ava i1ab1e.

The upper half of word 0 of the stack frame for P2A gives the loaded
location (053150) within the stack frame of P2 for the argument list.

2. The argument list from the memory dump is:

000000000002 - indicating two arguments
053146000000 - location of first argument (A)
053130000000 - location of second argument (B)

From the memory dump the value of the arguments are, as follows:

053146 000000000000 (A)
053130 000000000006 (B)

Although the parameters are declared to be 17 bits in length, the default
alignment assumption of ALIGNED causes them to be represented for ease of access
in a full word.

13-30 DEOU

SECTION XIV

EFFICIENCY CONSIDERATIONS

Several measures of efficiency can be applied to a computer program. The
program can be efficient in terms of execution time, storage space, or clarity
of expression. Sometimes these different measures of efficiency are compatible;
sometimes, however, one measure of efficiency must be sacrificed to increase
another.

The rules for clarity of expression apply in a general way to all
programming languages and do not change from one implementation of PL/I to
another. Therefore, rules for clarity of expression are not discussed here. On
the other hand, the rules for obtaining efficiency of time and storage are
closely related to the design of the host computer and the way the language is
implemented. Therefore, these efficiency rules are discussed in this section.

F i rs t, some genera 1
rules are g iven that
other measure.

rules are given for
ncrease one measure

GENERAL RULES FOR IMPROVING EFFICIENCY

the efficient use of PL/I . Then
of efficiency at the expense of the

The rules given in this section can be
efficiency of a PL/I program.

applied to improve the general

Data Types

The data type should be chosen to suit
the following rules apply:

the type of operation. In general,

Integer values (such as subscripts, counters, and indexes) should be
declared FIXED BINARY.

Noninteger values should be declared FLOAT BINARY, except in the case
where exceptional precision is required; for exceptional precision,
FLOAT DECIMAL should be used. (However, be aware of potential
incompatibility with a future PL/I system. See Section X at the end
of the paragraphs on DATA.)

A numeric picture variable should not be used in a complicated
arithmetic calculation. Picture variables are intended for use in
situations in which input-output is important and calculations are
simple.

1U-1 DEOU

A detailed set of guidelines for the choice of data types can be found in the
PL/I Reference Manual.

Data Conversions

Data conversions are time-consuming and should be avoided whenever
possible. Some hints for avoiding data conversions follow:

Avoid unnecessary conversions by carefully matching the data types of
variables. Even a difference in the number-of-digits or scale-factor
in the precision attribute can cause a conversion to occur.

Avoid unnecessary assignment to a target that requires promotion of
the aggregate type on the right-hand side.

Avoid unnecessary conversion of arguments in a procedure call or
function reference by using by-reference arguments rather than
by-value arguments. In order for an argument to be handled
by-reference every detail of the storage type of the argument must
match the storage type of the cor res ponding parameter.

Avoid excessive conversion of pictured values to arithmetic values.
As noted in the above paragraph on "Data Types” picture variables are
intended for use in situations where input-output is important and
calculations are simple.

Varying Str i ngs

The handling of NONVARYING strings is more efficient than the handling of
VARYING strings. The use of VARYING strings increases both the amount of
storage that must be allocated for the string and the amount of object code that
must be generated to handle the string.

Debugging Constructs

Constructs used for debugging should be removed before the program enters
production. These constructs include:

• Data-directed stream input-output statements.

• The SNUMBER option, used for error trace-back information.

• Condition prefixes for the SIZE, SUBSCRIPTRANGE, STRINGRANGE, and
STRINGSIZE conditions.

All of these features are costly in terms of execution time and storage use.

RULES FOR IMPROVING TIME EFFICIENCY

The rules in this section are useful for improving the time efficiency of a
PL/I program. Some of these rules improve the execution time of a program at
the expense of storage; others, at the expense of program clarity.

14-2 DE04

Alignment of Structures

Variables with the ALIGNED attribute are stored for efficiency of access.
Therefore, if a frequently-accessed variable is normally assigned the default
attribute UNALIGNED, the variable should be declared ALIGNED. UNALIGNED is the
normal default alignment for nonvarying strings and structures. More efficient
code can be generated if level 01 structures are declared ALIGNED.

If a frequently-accessed variable must be declared UNALIGNED, then the
value of the variable can be moved to an ALIGNED temporary for access. Consider
the variable X in the structure TABLE:

DCL 01 TABLE,
02 X FIXED UNAL,
02 Cl CHAR(6),
02 C2 CHAR(8);

The structure TABLE occupies four words. The access of X is accomplished by
assigning X to the ALIGNED temporary TEMP, as follows:

DCL TEMP FIXED;
TEMP=X;

Y=TEMP;

Z=TEMP;

W=TEMP;

The subsequent accesses of TEMP are more
if the value of TEMP is changed, it must
the variable TABLE.

efficient than accesses of X. However,
be assigned to X before any access of

Blocks and ON Units

BEGIN blocks and ON units involve considerable overhead at activation and
termination. Extensive use of such block structure in a program should be
avoided if time efficiency is the principal consideration. Internal PROCEDURE
blocks, however, are reasonably efficient provided they are not used
recurs i ve1y.

1U-3 DE04

String Assignment

The use of the STRING built-in function to assign string constants to a
contiguously stored series of bit strings is more efficient than assignment on
an element-by-element basis. Consider the following structure:

DCL 01 STR ALIGNED,
02 X FIXED,
02 B,

03 Bl BIT(l) UNAL,
03 B2 BITCI) UNAL,
03 B3 BITC2) UNAL;

The following assignment statement

STRING(B)='0101'B;

is equivalent to and more efficient than the element-by-element assignment:

Bl=’0'B;
B2 = ’l'B;
B3='01'B;

The declaration of a constant with a descriptive name,
sometimes clearer:

in this case, i s

DCL CLEAR_MASK BIT (4) INIT ("0101"B);

STRING (B) = CLEAR MASK;

F i xed-Point Mu 1ti pli cation and Division

The use of the MULTIPLY and DIVIDE built-in functions sometimes reduces the
number of instructions required for the evaluation of an expression. In
particular, the use of the built-in functions is efficient when the operands are
single precision FIXED BINARY variables and the result of the operation is also
a single precision FIXED BINARY variable. Consider the following statements:

DCL (l,J,K,M) FIXED BINARY(18);

M = I / J + K;
M = I*K + J;

The following use of the built-in functions is more efficient for this case:

M = DI VI DE(I, J,18,0) + K;
M = MULTIPLY(I,K,30,0) + J;

14-4 DE04

Fixed-Point Addition and Subtraction

The precision of intermediate results of arithmetic operations can have an
adverse effect upon efficiency. Consider the following example:

DCL (I,J,K) FIXED(35);

K = I + J;

According to the rules of PL/I, the number-of-digits of the intermediate result
of the addition or subtraction operation is one more than the maximum
number-of-digits of the operands. In this example, the number-of-digits of the
intermediate result requires a double precision number. Therefore, object code
is required to convert from single to double precision for the intermediate
result and from double to single precision for the assignment to K.

Suppose J, and K are declared in the following way:

DCL (l,J,K) FIXED(30);

Here, the intermediate result is a single precision number and no conversion is
necessary.

Scale-Factor Conversion

Scale-factor conversion can be avoided in the addition and subtraction of
decimal fixed-point numbers by declaring the same scale-factor for each
variable. For example, consider the following addition:

DCL X FIXED DEC(5,2);
DCL Y FIXED DEC(6,1);
DCL Z FIXED DEC(7,3);

©

Z* = X + Y;

The following version of these statements is more efficient:

DCL X FIXED DEC(6,3);
DCL Y FIXED DEC(8,3);
DCL Z FIXED DEC(7,3);

14-5 DE04

Address Calculation

If a reference with multiple locator-qua1ifiers is used frequently, the
introduction of temporary storage increases the efficiency of the program by
eliminating the need for repeated complex address calculations.

Assume that BASE1 and BASE2 are based variables and Pl, QI,
pointers, and consider the following program fragment:

and R1 are

R1->BASE1.R2->BASE2.X = Pl->BASEl.P2->BASE2.X
+ QI->BASE1.Q2->BASE2.X;

R1->BASEl.R2->BASE2.Y = P1->BASE1.P2->BASE2.Y
- Q1->BASE1.Q2->BASE2.Y;

The addressing can be made more efficient, in this case, by the use of the
pointers, P, Q, and R, as follows:

P = P1->BASE1.P2;
Q = Q1->BASEl.Q2;
R = R1->BASE1.R2;

R->BASE2.X = P->BASE2.X + Q->BASE2.X;
R->BASE2.Y = P->BASE2.Y - Q->BASE2.Y;

Another example of the
Consider, first, the following

effect i ve use of
program fragment:

temporary storage follows.

IF SUBSTRCS,I,1)="A" !
SUBSTRCS,I,1)=”B” !
SUBSTRCS,I,1)="C”
THEN GOTO LI;

ST = SUBSTRCS,1,1) !! "D";

If the result of the SUBSTR function is assigned to a temporary, the resulting
program is more efficient:

CHARI = SUBSTRCS,1,1);
IF CHAR1=”A” ! CHAR1="B" ! CHAR1="C"

THEN GOTO LI;

ST = CHARI !! "D" ;

14-6 DE04

Logical Expressions

The use of general
should be avoided. A
single IF statement with

logical expressions involving
series of simple IF statements is
a multiple condition test.

relational operators
more efficient than a

the statementFor example

THEN

& Y=C2 & Z = C3 THEN GOTO EXIT;

THEN IF Z = C3
THEN GOTO EXIT;

Logical expressions involving only BIT variables, however, are efficient.

IF Bl & B2 & B3 THEN GOTO EXIT;

Tes ts

The choice of a test
stated. For example:

can influence the economy with which a program can be

IF X =
THEN

Y
DO;
X = X +
Y = Y -
END;

is more efficient than

IF X = Y
THEN GOTO LI;

X = X + 1;
Y = Y - 1;

LI:

14-7 DE04

Invariant Computat i ons

Any operations that are not
should be moved outside the loop.

associated with the control variable of a loop
For example:

DO I = 1 TO 10;
DO J = 1 TO 100;

C(I, J) = A(I,J) + B(I, J);
Z(I) = X(I) + Y(I);
END;

END;

should be rewritten as

DO I = 1 TO 10;
Z(I) = X(I) + Y(I);
DO J = 1 TO 100;

C(I,J) = A(I,J) +
END;

END;

B(I,J);

Structure Layout

If a CHARACTER or BIT string variable
accessed, it should not share a word
consider the following structure of string

within a structure is frequently
with another variable. For example,

var i ab1es:

DCL 01 BC ALIGNED,
02 Cl CHARC3) UNAL,
02 Bl BITC36) UNAL,
02 C2 CHAR(3) UNAL,
02 C3 CHAR(l) UNAL;

The structure BC is represented in storage in the following way:

0 __________ 9 18________ 27

Cl Bl

Bl (cont i nued) C2

C2 (cont i nued) C3 ///////////
LU-Luim.1

The variables share words with
C2 are frequently accessed,
improves the efficiency of the

one another
rewr i ting

program:

Assuming that the variables Bl and
the structure in the following way

DCL 01 BC ALIGNED,
02 Cl CHARC3) UNAL,
02 C3 CHAR(l) UNAL,
02 Bl BIT(36) UNAL,
02 C2 CHARC3) UNAL;

IL-8 DEOL

The structure BC is now represented in storage in the following way:

Access of the variables Bl and C2 in this representation is more efficient than
in the previous representation.

The rules for laying out aggregates in memory are given earlier, in the
section on ’’Internal Representation of PL/I Data”.

Variable Extents

The use of strings whose
arrays whose bounds are not known
a variable must be used within a
structure, as follows:

maximum length is not known at compile time or
should be avoided whenever possible. If such
structure, it should be the last member of the

DCL 01 C ALIGNED,
02 Cl CHAR(8),
02 C2 CHAR(4),
02 C3 CHAR(U),
02 CU CHAR(N);

14-9 DE04

Static Global Variables

A variable that is declared in an outer block and
the inner blocks should be declared STATIC. For
fragment:

frequently accessed in
example, in the program

El: BEGIN;
DCL (X,Y) FIXED;
Y = X •

E2: BEGIN;

X = X + 1;

E3: BEGIN;

Z = X;

END;

END;

END;

If X is declared as a STATIC variable, the amount of object code for the above
program is reduced. The declaration of X and Y should be rewritten as.

DCL X FIXED STATIC;
DCL Y FIXED;

Global and Parameter Variable References

When an automatic variable declared in a calling block is used frequently
in the called block, the variable should be assigned to an AUTOMATIC temporary
declared in the called block.

Parameters passed by a CALL statement or a function reference, if
frequently accessed, should be assigned to a temporary AUTOMATIC variable within
the called procedure. The use of temporary storage for parameters is especially
effective if the parameters are declared with the UNALIGNED attribute.

14-10 DE04

Constant Arguments

The use of named constants as arguments of a CALL statement is more
efficient than the use of literal constants. Consider the following program
fragment:

DCL SUB2 ENTRYCFIXED,FIXED);
DCL C0NST2 FIXED I NT STATIC INIT(2),

C0NST3 FIXED I NT STATIC INIT(3);

CALL SUB2(CONST2ZC0NST3);

CALL SUB2(2,3);

The statement with the named constant arguments C0NST2 and C0NST3
efficient than the statement with the literal constant arguments.

is more

Initialization

If a variable is initialized, it should be declared as STATIC if possible.
Code for the initialization of AUTOMATIC variables must be executed on each
entry to the block or procedure.

■Labels.

Avoid the use of unnecessary labels in a program. Labels are sometimes
used to indicate a program note rather than a transfer point. The compiler can
perform better optimization on a series of statements if the statements are not
broken up by labels.

Concatenation

Unnecessary use of concatenation should be avoided because concatenation
operations are time-consuming.

Stream Inpu t-Ou tpu t

In stream input-output, use one statement with a long data list rather than
several input-output statements. Each input-output statement requires linkage
and, therefore, has an associated overhead.

Temporary Work Files

The use of ASCII is more efficient than the use of BCD in temporary stream
work files.

14-11 DE04

Edit-Di rected Input-OutPUt

For stream input-output, edit-directed input-output is more efficient than
either list- or data-directed input-output if the GET or PUT statement specifies
more than one item.

Stream Data List

In stream input-output, a single long item rather than a sequence of short
items, should be used in the data list whenever possible. Consider, for
example, the following program fragment:

DCL 01 C ALIGNED,
02 Cl CHAR(2) UNAL,
02 C2 CHAR(6) UNAL,
02 C3 CHAR(16) UNAL,
02 C4 CHAR(20) UNAL,
02 C5 CHARC36) UNAL;

DCL STR CHARC80) ALIGNED DEF(C);

GET LIST(STR);

GET LIST(Cl,C2,C3,C4,C5);

Buffers

For INDEXED or REGIONAL file organization, the number of buffers allocated
determines the actual amount of data transmitted to and from external files.
The allocation of sufficient buffer space minimizes the amount of time spent
transfer r i ng data.

RULES FOR IMPROVING STORAGE EFFICIENCY

The rules in this section are useful for improving the storage efficiency
of a PL/I program.

Ali gnment

In order to minimize the amount of storage used (at the expense of access
time), use the UNALIGNED attribute for variables within a structure.

Consider the case in which a large number of tables are allocated in
storage at execution time. The table has the following declaration:

DCL 01 TABLE ALIGNED BASED,
02 XI FIXED,
02 X2 FIXED,
02 Bl BIT(9),
02 Cl CHAR(3),
02 C2 CHAR(3),
02 C3 CHAR(5);

14-12 DE04

The storage layout for the above structure occupies seven words, as follows:

0 9 18___________27

XI
/////////////////////

XI(suppl.)

X2
/////////////////////
X2(supp1.)

Bl
////////////////////////////////

Bl (sudpI.)

Cl
///////////
Cl (suppl.)

C2
II11IIIIII1

C2 (suppl.)

C3
C 3 (co n t) ////////////////////////////////

______________ C3 (suppl.)____________

Each execution of the statement

ALLOCATE TABLE SET(P);

allocates seven words and sets the pointer variable P to point to the starting
address. However, if the variables of the structure TABLE are declared to be
UNALIGNED, the variables are stored to minimize storage:

DCL 01 TABLE
02 XI
02 X2
02 Bl
02 Cl
02 C2
02 C3

ALIGNED BASED
FIXED UNAL,
FIXED UNAL,
BIT(9) UNAL,
CHARC3) UNAL,
CHAR(3) UNAL,
CHARC5) UNAL;

The storage layout for the above declaration occupies only four words, as
fo11ows:

0 9___________ 18___________27

XI X2

Bl Cl

C2 C3

C3 (cont i nued)

The second representation of the structure TABLE saves three words per
structure. If many TABLES are to be allocated, then the saving is substantial.

Detailed rules for the storage layout of variables are given earlier in the
section on the ^’Internal Representation of PL/I Data”.

14-13 DE04

Stati c Variables

Variables declared with the STATIC attribute are allocated when the object
program is loaded and remain allocated throughout the activity. The use of the
STATIC attribute, therefore, should be avoided whenever possible if storage
efficiency is the principal consideration.

File 0rganization

If a program uses only one or two of the three possible types of file
organization, then the specification of the file organization in the ENVIRONMENT
option of the file declaration is more efficient than the specification of the
organization on control cards at execution time.

£-41 e r n a, l . v a rLaklas.

The cost of binding and allocating each external variable is high. This
cost can be reduced by gathering several external variables together into a
structure. Consider the following declarations:

DCL (X1,X2,X3) FIXED EXT STATIC;
DCL (Pl, P2, P3, PL) PTR EXT STATIC;

A more efficient representation of the above is:

DCL 01 LINK EXT STATIC,
02 XI FIXED,
02 X2 FIXED,
02 X3 FIXED,
02 Pl PTR,
02 P2 PTR,
02 P3 PTR,
02 P4 PTR;

This also reduces the number of separate labeled common regions because a
separate labeled common region is created for each external static declaration
statement. A maximum of 63 labeled common regions is permitted per external
procedu re.

Data-Di rected Input-Output

The use of the DATA option in stream input-output without an explicit list
of variables requires the entire symbol table to be kept in storage during the
execution of the program; therefore, it should never be used without a list.
Even with an explicit list of variables, the cost is considerable. The use of
the DATA option should be confined to debugging.

14-1U DE04

Lriput-Output Interfacing

Whenever possible, input-output statements should be confined to a single
block in a program. The system allocates storage within each block containing
input-output statements for an input-output interfacing facility. If
input-output statements appear in more than one block, storage is allocated in
each block for the interfacing facility, and the resulting amount of storage for
the program is increased.

Work Regions for Files

When an INDEXED or REGIONAL file is used, the proper size for the work
region should be calculated, using the formulas given earlier in the sections on
’’INDEXED Organization” and ’’REGIONAL Organization” respectively. The
specification of the proper size for the work region on the $ USE control card
avoids the allocation of unnecessary space.

14-15 DE04

SECTION XV

COMMON PROGRAMMING ERRORS

This section contains remarks on some of the most common programming errors
made in the use of PL/I. Some of the errors described here are detected by the
compiler. However,, some of the errors are undetectable at compile time, and
their occurrence during the execution of the program produces invalid results or
interruption of the flow of control of the program. Often, this type of error
arises from a misunderstanding of the rules of PL/I and is, therefore, difficult
to resolve.

The common mistakes are listed according to the following classifications:

Program constructs
Program structure
Program control
Initialization
Eva 1ua t i on
Convers i on
P rocedu re calls
Inpu t-output

The errors in each of the above classifications are described and, where
necessary, illustrated by an example. The classification given here is intended
to aid. the reader in locating a topic of interest; however, like most
classifications, the above one is somewhat arbitrary. Moreover, the list of
common errors given here is not to be considered, in any sense, complete.

Discussions of programming style appear throughout the PL/I Reference
Manual, usual ly.under headings of the form ’’Guidelines for ... ”. Some of the
discussions point out features of PL/I that are especially susceptible to
programmi ng errors.

PROGRAM CONSTRUCTS

Some reminders related to the basic constructs of a PL/I program are given
in the following paragraphs.

15-1 DE04

Special Characters

The representations of some characters in the PL/I character set depend
upon the code used. The representations for these characters in ASCII, BCD, and
EBCDIC are given in the following list:

Character
Representat ion

ASCI 1 BCD EBCDIC

OR i • i • 1

AND & & &

NOT A t —1

break —■ <— —

quote ' or " ' or " 1

concatenat i on 1 1 • • 1 1 • • II
•

Reserved Character Combination

A program or data card with the character f$f in Column 1 and the blank
character in Column 2 can be mistaken for a GCOS control card. Therefore, this
sequence of characters in the first two columns of a card should be avoided.

Confusion Between Break and Minus

The statement

MACHINE = H-6000;

is interpreted as the assignment to the variable MACHINE of the difference
between the variable H and the constant 6000. If H-6000 is to be interpreted as
a variable name containing a break character, the statement must be written as
fo11ows:

MACHINE = H-6000;
MACHINE = H-6000;

(in BCD)
(in ASCI I and EBCDIC)

Confusion Between Assignment and Comparison Operators

The character ’=’ is used both for assignment and for comparison. In the
following statement, the first character 1=1 is used for assignment and the
second, then, for comparison:

A = B = C;

The above statement is equivalent to the statement:

IF B = C THEN A = B ELSE A = ’O'B;

15-2 DE04

Multiple assignment is accomplished by commas separating the identifiers to
be assigned. If the above statement is to be a multiple assignment, it would be
wr i tten:

A, B = C;

This has the effect of assigning the value in C to both A and B.

Picture Characters

Alphabetic PICTURE
program is input directly
declaration is incorrect:

characters must be given in upper case even when the
in ASCII from a terminal. For example, the following

DCL X PIC 1aaaa’;

The correct form of the above declaration requires the PICTURE characters to be
in upper case, as follows:

DCL X PIC ’AAAA’;

Decimal Point in a Pictured Character String

The PICTURE character ’V’ indicates a scale factor and does not. occupy
storage. On the other hand, the PICTURE character is an editing character
and does not indicate the scale factor. Consider, first, a program fragment
that uses the fVf character in the declaration of CHARGE:

DCL CHARGE PICTURE "S999V9";
CHARGE = 123.4;
PUT LIST(CHARGE);

The execution of the PUT statement produces the following output:

+ 1234

Consider, next, a program fragment that uses the
declaration of CHARGE:

1.1 character i n the

DCL CHARGE PICTURE "S999.9";
CHARGE = 123.4;
PUT LIST(CHARGE);

The execution of the PUT statement produces the following output:

+012.3

15-3 DE04

To output the true value of CHARGE, the characters ’V1 and 1. 1 must be
adjacent in the declaration. For example:

DCL CHARGE PICTURE "S999V.9";
CHARGE = 123.4;
PUT LIST(CHARGE);

The execution of the PUT statement, in this case, produces the correct result,
namely:

+123.4

Restrictions on Identifiers

The characters and ’Q1 cannot be used in an identifier. The length of
an external name is limited to six characters. The length of a file name is
limited to five characters.

Conflict Between Built-In Function and Procedure Names

If a built-in function is used and not declared, a conflict can occur,
fol lows:

as

TRUNC: PROC(Z) RETURNS(FIXED);

Y = TRUNC(X);

END;

Since the built-in funtion TRUNC is not declared, the procedure TRUNC in this
example is assumed to be recursive.

PROGRAM STRUCTURE

The unintentional omission of a delimiter is a common error in program
structure. The effect of a missing comma, semicolon, or parenthesis is well
known. A missing or misplaced END statement affects the entire program meaning.
The effect of the omission of comment delimiters, quotation marks, and ELSE
clauses are described in the following paragraphs and a recommendation about the
use of the END statement for the multiple closure of blocks is made.

15-4 DE04

Unmatched Comment Delimiters

Unmatched comment delimiters can produce an unexpected interpretation of
the program by the compiler. Consider the following example:

/* COMMENT: CALCULATE
X = y**Z**2;

/* COMMENT: CALCULATE

SPEED

TIME */

The unintentional omission of the closing comment delimiter ’*/’ on the first
line of this fragment results in all three lines being taken as comment. The
assignment on the second line, therefore, is never performed.

Nested comments are not allowed. The closing comment delimiter of
nested comment prematurely terminates the enclosing comment:

the

/* COMMENT: IN THIS CASE
X /* THE SPEED */
IS REPLACED BY AN ESTIMATED VALUE */

The comment is terminated at the end of the second line of the above fragment.
The third line is not considered to be a comment and the PL/I compiler attempts
to interpret that line as a PL/I statement.

auQt.es

In order to preserve the pairing of quotation mark delimiters
strings, any quote within the string must be replaced by a
Consider the following text:

for character
double quote.

HE SAID, "THE CAR WON’T GO".

When this text is represented as a character string constant, the internal
quotes are replaced by double quotes as follows:

"HE SAID, ""THE CAR WON ” T GO""."

Thus, the pairing of the quote delimiters is preserved.

15-5 DE04

auQt.es

Matching ELSE Clauses

The compiler associates an ELSE clause with the closest previous unmatched
IF statement. To get the correct sequence of control, it is sometimes necessary
to include a null ELSE clause. For example, to assign the value 1 to X if both
Bl and B2 are true and the value 2 to X if Bl is false, a null ELSE clause is
required as follows:

IF Bl
THEN IF B2

THEN X = 1;
ELSE;

ELSE X = 2;

If the null ELSE clause is omitted, then the ELSE clause is associated with the
closest previous IF, as follows:

IF Bl
THEN IF B2

THEN X = 1;
ELSE X = 2;

When the ELSE clause is associated in this way, the value 1 is assigned to X if
Bl and B2 are both true and the value 2 to X if Bl is true and B2 is false.

Multiple Closure of Blocks

The use of an END statement with a label to close a series of nested
PROCEDURE blocks, BEGIN blocks, or DO-groups can introduce an obscure error.
Consider the following program fragment:

Pl: PROC;

P2: PROC;

1 TO N;DO I

X

END Pl;

15-6 DEOU

The END statement with the label Pl is intended to close the PROCEDURE block Pl
and the internal procedure P2. However, the END statement for the DO-group was
inadvertently omitted, and, therefore, the END statement closes the DO-group as
well as the above mentioned procedure blocks.

If blocks are closed explicitly by END statements without a label, any
missing END statement is detected by the compiler. The use of END statements
for multiple closure of blocks tends to obscure the structure of the program and
is, therefore, not recommended.

PROGRAM CONTROL

Some critical features of program control are described
paragraphs.

i n the following

QPTIONS(MAIN) Attribute

Only one
execution time,

procedure in a program can have the OPTIONSCMAIN) attribute. At
control is passed to the procedure declared with that attribute.

Transfer of Control

A GOTO statement that is outside a given PROCEDURE block, BEGIN block, or
iterative DO-group cannot transfer to a label that is inside the block or group.
The following fragment contains such a transfer and is, therefore, invalid.

Pl: PROC;

GOTO A;

P2: PROC;

A: ’

END;
END;

15-7 DE04

A PROCEDURE block is executed only when it is invoked by a CALL statement
or a function reference. A BEGIN block is executed when control reaches the
BEGIN statement, either from the preceding statement or from a transfer to the
label of the BEGIN statement. Consider the following program fragment:

Pl: PROC;

GOTO A;
GOTO B;

A: BEGIN;

END;
PROC;

END;
END;

The first transfer statement is correct and as a result of its execution control
is transferred to the block labeled A. The second transfer statement is
incorrect. To execute the procedure B, a CALL statement must be used. If
control is not explicitly transferred to the BEGIN block in the above example,
it is executed when control passes to it from the preceding statement. The
PROCEDURE block, however, is not executed unless it is explicitly invoked.

Changing the Index within a DO-Group

If the index of an iterative DO-group
index may never exceed the limit and the
following program fragment:

is changed within the DO-group,
program may loop. Consider

the
the

DO I = 1 TO 20;

PUT LIST((X(I) DO I = 1 TO 10));

END;

The index I in this example is
therefore, never exceeds the limit.

reset on each execution of the group and,

15-8 DEOU

LAgEL and ENTRY Variables

Misuse of LABEL or ENTRY variables can cause errors that are difficult to
trace. Consider the following program fragmentz in which the use of ENTRY
variables causes the mechanism for block activation to be disrupted:

Pl: PROC OPT 1ONS(MA 1N);
DCL EV ENTRY VARIABLE;

CALL E2;

0UT1: CALL EV;

E2: PROC;

EV = E3;

GOTO 0UT1;

E3: PROC;

END;

END;

END;

The statement

CALL EV;

attempts to call the procedure E3, which is nested within the procedure E2.
However, at the time of the call, E2 is no longer active and therefore, the call
is not valid.

INITIALIZATION

Misunderstanding of the effect of initialization and the time at which
initialization activities occur often gives rise to programming errors. Some
remarks on this type of error are given in the following paragraphs.

15-9 DE04

Initialization of Variables

If d variable is accessed before a value has been assigned to the variable,
the program is in error and its continued execution is undefined.

No variable should be expected to be initialized unless it is declared with
the INITIAL attribute. If an AUTOMATIC variable is declared with an INITIAL
attribute, then the variable is initialized to that value upon each activation
of the block in which it is declared. If an AUTOMATIC variable is declared
without an INITIAL attribute, then the value of the variable is undefined upon
each activation of the block.

An attempt to
that have not been

write out, using STREAM-oriented data transmission,
initialized can cause a CONVERSION error to occur.

variables

Allocation of Variables

An
Cons i der

AUTOMAT IC variable in a block is allocated when the block is
the following program fragment:

act i vated.

P: PROC;
DCL N FIXED;

P2:
N = 10;
BEGIN;

DCL Cl CHAR(N);
DCL C2 CHAR(N) BASED;
N = 20;
ALLOCATE C2 SET(P);

END;

END;

The AUTOMATIC variable Cl is allocated when the block is activated. Since the
value of N is 10 when the block is activated, ten characters are allocated for
Cl and remain the allocation for Cl throughout the block’s execution. The
variable C2 is allocated by the ALLOCATE statement. Since the value of N is 20
when the ALLOCATE statement is executed, twenty characters are allocated for C2.

15-10 DEOU

Evaluation of Increments and Limits for DO-Groups

Increments and limits for DO-groups are computed upon entry to the
DO-group. Consider the following program fragment:

PROC;

J =
DO I

10;
= 1 TO J;

J = 20;

END;
END;

The limit of the DO-group is evaluated upon entry and is, therefore, 10.
Although the value of J is changed within the DO-group, the value of the limit
is unchanged and consequently, the DO-group is executed ten times.

External Names

The declarations of an external name must be identical in all external
procedures which become part of a single execution unit. Consider, for example,
the declaration of the external variable, M, in two external procedures:

P1: PROC *
DCL M FIXED EXT INIT(l);

END;

P2: PROC;
DCL M FIXED EXT;

END;

The two declarations of M differ: in one case M is initialized and in the other,
it is not. The above procedures, therefore, are incorrect.

15-11 DEOU

Extent Expressions for BASED Variables

The extents of BASED variables must be known at the time the variable is
allocated. Consider the following program fragment:

P1: PRO C•
DCL 01 BV ALIGNED BASED(P),

02 N FIXED,
02 CH CHAR(N);

ALLOCATE BV;

END;

The length of the character string variable CH is given by N, a member of the
same structure. Therefore, when the ALLOCATE statement is executed, the value
of N and the length of the character string CH are undefined. To obtain the
correct result, the REFER option should be used, as follows:

DCL 01 BV ALIGNED BASED(P),
02 N FIXED,
02 CH CHARCM REFER(BV.N));

The value of
assigned to
to the BASED

M determines the maximum length of the character string and is
BV.N at the same time that BV is allocated. Subsequent references

variable CH make use of the value of BV.N.

Replication Factors in INITIAL Attributes

In an INITIAL attribute, a parenthesized expression can be used to treat a
single value as a sequence of values. Consider, for example, the declaration:

DCL X(3) FIXED INIT((3)1);

This declaration initializes each of the three elements of X to the value one.

However, a problem arises when the initial value is a string constant.
Consider the declaration:

DCL Y(3) CHARC20) I NIT((3)’X’);

The parenthesized expression in this declaration is a factor that denotes the
repetition of the sequence in the string constant the specified number of times
to derive the complete constant. The above declaration is equivalent to:

DCL Y(3) CHARC20) INIT(’XXX’);

15-12 DE04

Since this declaration provides only one initial value when three initial values
are required, the declaration is invalid. To initialize the three values to a
single X, the following declaration must be used:

DCL Y(3) CHARC20) INIT((3)(1)’X1);

In this statement, the parenthesized expression 1(1) ’ is the factor treated as
part of the string constant, and the parenthesized expression ’(3) 1 is treated
as a replication factor for the initial values of the three-element array.

EVALUATION

The following paragraphs list errors that arise from misunderstanding of
the order of evaluation or the behavior of the SUBSTR built-in function.

Multiple Assignments

Misunderstanding of the order in which multiple assignments
sometimes creates a programming error that is difficult to trace,
following program fragment:

are executed
Cons i der the

Pl: PROC;
DCL (A(5),I) FIXED;

A = 0;
I = 1;
A(I),I,A(I) = I + 1;

END;

After the execution of the multiple
have the following values:

as s i gnmen t statement, the array elements

A(l) 2
A(2) 2
A(3) 0
A(U) 0
A(5) 0

The multiple assignment statement is equivalent to the following sequence of
statements:

TEMP =1+1;
A(I) = TEMP;
I = TEMP;
A(I) = TEMP;

15-13 DEOU

Evaluation Order

Misunderstanding of the order in which expressions are evaluated can lead
to errors that are difficult to find. The following list gives some common
unparenthesized expressions. The order of evaluation for these expressions is
made explicit by the use of parentheses.

Expression

A = B ! C

B ! C & D

A > B ! C

A > B > C

A**B**C

Evaluation Order

(A = B) ! C

B ! (C & D)

(A > B) ! C

(A > B) > C

A**(B**C)

Parentheses can be used to change the order of evaluation when required.

SUBSTR Built-In Function Arguments

The arguments of the SUBSTR built-in function that specify the starting
position and the length must be valid for the specified string. Consider the
following example:

P: PROC;
DCL Cl CHAR(12);
DCL C2(10) CHAR(4);

DO I = 1 TO 10
C2 (I) = SUBSTR(C1, 1,4);
END;

END;

The assignment statement in the above example is valid for
one to nine. However, when I has the value ten, the SUBSTR
access the thirteenth character of a twelve-character
SUBSCRIPTRANGE condition is raised if the condition
SUBSCRIPTRANGE condition is not enabled, the program is
continued execution undefined.

the values of I from
function attempts to

string and the
s enabled. If the

in error and i ts

15-14 DEOU

jjUBSTR Function and Varying Strings

An assignment to a varying string by the SUBSTR pseudo-variab1e does not
alter the control word that holds the current length of the string. Consider
the following example:

DCL Cl CHAR(6) VARYING;

Cl = "A”;
SUBSTRCC1,2,3) = ’’BCD”;
PUT LIST(Cl);

The length of the varying string Cl is determined to be one by the first
assignment statement. Since the SUBSTR pseudo-variable does not alter that
length in the second statement, the PUT statement outputs the single character
'A' .

Only another assignment into or concatenation onto a varying
modify the current size of the string.

string will

CONVERSION

Some of the most difficult errors in PL/I programs are related to the
effect of conversion. Conversions should be avoided, whenever possible. The
resulting program is clearer and more efficient. Some conversion problems are
described in the following paragraphs.

F j xed-Point Division

The precision of a constant affects the precision of the intermediate
results. Consider the following program fragment:

DCL X FIXED DEC(3,1);
X = 10 + 1/3;

The precision of the intermediate result is (59,58). In PL/I, this precision
causes the FIXEDOVERFLOW condition to occur. For general fixed-point arithmetic
expressions, the DIVIDE built-in function, which permits the programmer to give
the precision of the result, should be used. For constant values, a single
constant with a decimal point should be used. Thus, the above assignment
statement should be written as:

X = 10.333333

15-15 DE04

Loss of Precision in Conversion

According to the rules of PL/I, conversion occurs whenever the data types
of the operands of an expression differ. In some cases, the conversion results
in the loss of the value of the result of the operation through truncation.
Consider the following program fragment:

DCL X FIXED(U) INIT(l);
DCL (Bl, B2) BIT(4);

Bl = X;
B2 = X + 1;

The execution of the first assignment statement assigns the value ’0001’ to Bl.
The execution of the second assignment statement involves addition. The
precision of the decimal constant, 1, converted to binary is (5,0). The
precision of the result of the addition operation, then, is (6,0). The value of
the addition operation ’000010’ is truncated to four bits for assignment to B2.
Therefore, the value ’0000’ is assigned to B2 as a result of the execution of
the second assignment statement.

To obtain the correct result the built-in functions FIXED or BIT can be
used, as foilows:

or

B2 = FIXED(X +1,4);

B2 = BIT(FI XED(X +1,3),4);

Fixed-Point Arithmetic to Character Conversion

Assignment of a fixed-point arithmetic value to a character string requires
three more characters in the string than there are digit positions in the value.
Consider the following example:

DCL C CHAR(6) STATIC INIT(123456);

The initial value of C, as specified in the above declaration, is:

’ 16161612 3 ’

where |6 indicates the blank character.

DCL C CHAR(6) STATIC INIT("123456");

To obtain the desired result, the initial value should be given as a
character string constant, as follows:

15-16 DE04

PROCEDURE CALLS

Some common programming errors made in the invocation of procedures and
function references are described in the following paragraphs.

By-Value Arguments

If the storage type of an argument in a CALL statement or function
reference is not identical to the storage type of the parameter, the argument is
passed by-value. The value of a by-value argument cannot be changed by any
action of the procedures. Consider the following program fragment:

El: PROC;
DCL X BIT(3);
DCL E2 EXT ENTRY(BIT(3) ALIGNED);
X = "001”B;
CALL E2(X);
IF X = ”101"B THEN GOTO NEXT;

NEXT: END;
E2: PROC(B);

DCL B BITC3) ALIGNED;

B = "lOT’B;
RETURN;
END;

Since no alignment is specified for the variable X in its declaration, it
acquires the default alignment UNALIGNED. Therefore, the storage type of the
argument X is not identical to the storage type of the parameter B. The
argument is passed by-value and after the execution of the procedure E2, the
value of X is unchanged. The test on X following the procedure call, therefore,
fails.

15-17 DEOU

Parenthesized Arguments

If an argument is enclosed in parentheses, it is passed
the generation of storage associated with the parameter is not
occupied by the original argument, any assignment to the
procedure has no effect upon the value of the argument.

by-value. Since
the generation

parameter by the

Consider the following program fragment:

Pl: PROC;
DCL P PTR ALIGNED;

CALL SUB((P));

SUB: PROC(Q);
DCL (Q,R) PTR ALIGNED;

Q = R;
END;

END;

The execution of the procedure SUB does not affect the value of
variable P.

the pointer

Function References without Arguments

A function reference without an argument list must be followed by a pair of
parentheses, indicating an empty list. In this way a function reference is
distinguished from an entry constant. Consider the following program fragment:

DCL FUNC ENTRYO RETURNS (CHAR(10));
DCL V ENTRY;
DCL C CHAR(10);

V = FUNC;
C = FUNCO;

The first assignment statement
variable V. The second assignment
the CHARACTER string variable C.

assigns the entry constant FUNC to the entry
assigns the result of the function FUNC to

15-18 DEOU

Multiple Entry Points

When a procedure has more than one entry point and the different entry
points have their own parameter lists, any statement within the procedure that
refers to parameters from different lists is in error. For example, consider
the following program fragment:

Gl: PR0C(A,B);

G2: ENTRY(X,Y);

C = A + X;

END;

The assignment statement in the above example is in error because it refers to a
parameter, A, from one list and a parameter, X, from another list.

Parameter Extents

The extent of a parameter can be declared with either a constant or an
asterisk. The following declaration of a parameter is wrong because the
parameter extent is declared to be a variable:

Pl: PR0C(A,N);
DCL A(N) FIXED DEC(6);

END;

INPUT-OUTPUT

Common errors related to input-output are described in the following
paragraphs.

15-19 DE04

Input-Output Lists

An iterated input-output list must be parenthesized. The following GET
statement is syntactically incorrect.

GET LIST(A(I), I DO I = 1 TO N);

The above statement should be written as:

GET LIST((A(I)z I DO I = 1 TO N));

Control Format I terns

A control format
that is paired to a data

item is executed only if it precedes a data format item
item. Consider the statement:

PUT EDIT(A,B)
(F (4), X(5) , F(5) , X(3));

In this statement, the control format item, X(3), is not executed.

the

SKIP EDIT(X,Y)PUT

and

EDIT(X,Y)PUT

line before printing thei nare equivalent. Both statements skip a
ED IT-directed format.

Control options are always executed
their position with respect to the
s tatements:

X and

before data transmission regardless
data specifications. For example,

i n.pu.t. Str.i n^s

A CHARACTER or BIT string format item must include the string size on
input. The size specification is not required for output.

15-20 DE04

Mixed Transmission

If a file is read using both list- and edit-directed data transmission, the
format of the file must be taken into account. Consider, for example, the
following program fragment, which contains two types of data transmission:

DCL X FIXED DEC(6);
DCL Z CHAR(U);

GET LIST(X);
GET EDIT(Z)

(A(4));

When this program reads the input stream:

12 3|6k5, 0ABC

the following results are obtained for X and Z:

123
1 IzS, feSA1

X
Z

That is, after execution of the first list-directed GET statement, the next data
item will begin with the first character following the blank or comma that
separates it from the previous data item.

Page and Line Size

The specifications PAGESIZE and LINESIZE for a file are given as options on
the OPEN statement for the file. These specifications are not part of the file
declaration.

BCD Devices

In RECORD-oriented input-output, code conversion is not performed. Since
the internal code for PL/I is ASCII, RECORD-oriented input-output cannot be used
to transmit data to peripheral devices that accept only BCD. Therefore,
STREAM-oriented input-output must be used to transmit data from the card reader
or to the line printer.

Control Cards for INDEXED and REGIONAL Files

If a file with INDEXED or REGIONAL organization is used in a program, the
work region and file parameters must be given at execution time on control
cards. The required control cards are described in the sections of this manual
dealing with file organization.

15-21 DE04

SECTION XVI

SOLUTION OF A PROBLEM IN PL/I

The variety of language features available in PL/I gives the user great
flexibility in the solution of problems. To solve a given problem, a number of
different approaches can be taken.

This section defines a problem and then illustrates two possible programs
for the solution of the problem. The first solution is a hastily-written
program for the programmer’s own use. The second solution is a program
developed for use in a production environment.

The problem is simple and the programs are short. Aside from this unreal
simplicity, the problem represents a realistic application of PL/I. The
programs illustrate the features of the language and the freedom the programmer
has in the solution of a problem. In addition to the solution programs given
here, there are other equally valid solutions to the problem. The suitability
of a program depends upon the constraints under which it is written.

DEFINITION OF THE PROBLEM

The problem to be solved is defined as follows:

Input a value, calculate the exact value of its factorial,
and print the value with the calculated factorial.

The factorial is a mathematical function that is defined by the following
formu1 a:

factorial(n) = n(n-1)(n-2)...1

where n is an integer greater than zero, and

factori al(0) = 1

The calculation of factorials is a simple problem with some interesting
propert i es:

• The factorial is defined only for non-negative integers.

• The factorial increases rapidly.

16-1 DE04

The two programs given here calculate the factorial in approximately the same
way. Both programs use binary arithmetic to obtain an efficient solution and
fixed-point arithmetic to obtain maximum binary capacity. The programs,
however, are very different in their handling of input-output.

FIRST SOLUTION

The first solution of the defined problem is a program written for the
programmer’s own use. The program is written using list-directed input to
obtain the values for which the factorial is to be calculated. Since the only
user of the program is the programmer himself and since the program is to be run
only a few times, no special provisions are made to detect and handle illegal
input. If a condition occurs as a result of an input value, the default ON unit
is invoked and the execution of the program terminated. For convenience, the
programmer makes use of the default ON unit for the ENDFILE condition to
terminate the run when the input values are exhausted.

16-2 DE04

Deck Setup

The deck setup for the first solution is given in Figure 16-1.
the output values are of interest to the programmer, the optional
omitted and warning messages suppressed.

S i nee on 1y
1i s t i ngs are

16

$ SNUMB
$ IDENT
$ USERID
$ OPTION
$ PL1

JOB16

PL1,NOMAP
SEVERITY2

Pl: PROC OPT IONS(MA IN);
DCL I FIXED;
DCL (SYS INzSYSPRI NT) FILE;
PUT PAGE LIST(”EXACT VALUES OF FACTORIALS”);
PUT SKIP L I ST (” I "z’’FACTOR I AL (I)’’);

LOOP: GET LIST(I);
PUT SKIP LIST(lzFACT(I));
GOTO LOOP;

FACT: PROC(ARG) RETURNS(FIXED(71));
DCL ARG FIXED;
DCL RES FIXED(71);
DCL I FIXED;
IF ARG = 0 THEN RETURN(l);
RES = 1;
DO I = 1 TO ARG;

RES = RES*I;
END;

RETURN(RES);
END;

END;

$ EXECUTE
$ LIMITS 2Z 30Kz-2K
$ DATA 1*
6 0 20 5 9 21 22
$ ENDJOB
** * EOF

Figure 16-1. Deck Setup for First Solution

16-3 DEOU

Output Listing

The complete output listing for this run is given in Figure 16-2. Because
the programmer made use of the default ON unit for the ENDFILE condition, an
error trace-back and resister list are given at the conclusion of the execution
of the program. Following this information, the information output on SYSPRINT
is 1i s ted.

16-4 DE04

J0
B

16
 ENT

ER
ED

 7.1
*d AT

11
.3

58
 FRO

M
 SYS

TE
M

-0
 CD

R
D

R

o
o
o
o
o

Fi
gu

re
 16

-2
. Com

pl
et

e O
ut

pu
t Li

st
in

g f
or

 Fir
st

 So
lu

tio
n

16-5 DEOU

II

o
Ct
o
o
LU
Ct

LU
o
C*>
C-J

Ct
o
Cl
UJ
Ct

II

C
o

o </)

<n
k_

bO
C

(/)

□
Q.

ZJ
o

(D

QJ
r—
Q.
E
O
o

c
o o

CM
I

CD

(D

□
W)

16-6 DEOU

UJ
o

UJ

co

co

co

co

UJ

UJ

coI UJ

I

co
UJ

UJ
co

>-
H- Ct

z ZDOuJi^Ct VOD
t-« I— »— 02TSTc/)U>«mUjCDVO2:u-
H(/iQ.yH>->a:uJb-><iuS‘Ouj
U~> fi «X >- UO—lcn<tXCLUJ»— UJOZCE
_j_j51cn_j«xu>Q.UJO<z>cnou>(/)x

ooooooooo ooooo
Z 7! J* P1

in
u

in

<U
L.
s

16-7 DEOU

(D
L_
□
bD

• —
Ll_

16-8 DE04

16-9 DE04

o
o
o
o
o
o
II

3)
o

o
Ct
O

LU
or

CM
I

ID

(U
k_

3)

16-10 DE04

o
o

ex
UJ

O
o
o
(X
T—
o

<r
CD

CD
O
O
o
o
in
x

cd o
c o
o o
O CD
cd o
o O
© o
cd o
o cd
o o
© ©
o o

o
o
ct
o
o
o

cd o o o
CD CD CD CD
CD CD CD CD
O CD CD CD
o o cd ct
o o o o
o o o o
o cd cd cd
O O CD O
o o o o

o o o
o o o o

ru
(X
o
c
T—
o
(XI

o
o
r—
ct
o
©
o
o
o

nd
o
o
o
©
o
o
o
cd
o
o
o

o
o
o
o
cd
o

ru
T~
o

nd
o

o
cd
o
tn
T—
o
©
CD
o

o
o
o
o
o
ND
ct
(XT-
o
cd

o
o
cd
o
o
cd
o
o
o
o
o
c

o
o
©
o
©
o
o
o
o
o
o
o

in
(X
nd
<XJ
o
o
o
o
o
o
o
cd

o
in
nd
nd

©
CD
o
o
o

<d
o
o
o
©
©
©
o
o

o
o
(X
o
o
(X

cd

o o
cd o
o o
o o
o o
o o
cd o
o o
o o
c o
o o
o o

o
©
o
o
o
o
©
©
cd
cd
cd
ct

in
o
«—
X
nd

o
o
o
o
o
CT

OCTO
CT CD CD
C CT CD
CD CD CD
CD CD CD
O CT CD
CD CD CD
CD CD CD
in o o
x o o
CJ o o
CD CD CT

o cd
in CD
O CT
o o
o o
o o
o o
o o
o o
CT O
CT CD
o o

m
o
©
CT
CT
o
o
o
o
©
o
c>

o
o
o
©
o
in

o
r-
nd
o
x

CT
©
o
nd
o
o
o
©
o
o
o

CT CT
o o
O CT
O o
O CT
O CT
o o
o o
ct c
CT o
CT O
o o

«- o
o o
o o
o o
o o
o o
o o
nj tn
o m
c> nj
o o
o o

©
©
o
o
o
o
©
©
o
o
o

c
c>
o
o
o
©
o
o
o
CT

cm CT CT O
o o o o
© © © ©
CT CT O O
O O CT C>
O C) ci O
CM r- o O
Cl CT O O
O O CT CT C CD O O
nj o CT CD
m c cd o

m
r\j
m
CD
CD
o
CD
CD
CD
CD
CD
CD

r- CT
in CD
nj cd
CD CD
m
O CT
CT CD
CD CT
CT o
nj r-
O CD
OJ CD

CT
CD
CD
©
CD
o

fXJ
CD
CD
o

o
o
CT
CD
CD
©
CD
CD
CD
CD
CD

CD
CD
CD
CD
©
CD
CD
CD
CD
CD
©
CD

in
m

CD
o
CD
CD
C

CD
CD
CD

C

CD
CD
CD
CD

ru

CD
CD
CD
CD
CD
CD

CD
CD
CD
CT
CD

nj

CD CD
CD CD
C CT
CD CD
CD CD
CD CT
CD CD
CD CD
CD CD
CD O
O CD
CD CD

CD CD
CD CD
CD CD
CD CD
CD CD
CT CD
(XI CD
O CD
CD o
o (xj
m o
CD O

CD
CD
(XI
m

CD
CD

O
(XI

CD
CD
©
CD
CT
CD
CT
CT
CD
CD
CD

CD
CD
CD
C
CD
V-“
CD
r—
ND
CD
iXJ

CT
CD
CD

O
CD
CD
CD
<—
CD

CD
CD
CD
CD

CD

(XI
CD
CT
CD
<D
ND
(XI
CD
CT

m cd
(XI CD
ND CD
CD CD
<- CD
CT CD
CD CD
CT CD
CT CD
CD CD
CD CD
CD CD

O CD
«- CD
o o
ND CD
CD CD
CD CD
CD CD
CD f\i
O CD
CD CD
CD CD
CD CD

O
CD
CD
CT
©
CD
C
o
CD
o
CD
CD

CD
CD
O
CD
O
CD
CD
CD
CD
CT
CD

CD
(XI
in
CT

CD CD
CD CD
CD O
CD CD
CD CD
C CD
CD CD
CD CD
CD CD
CD CD
CD CT

CD CD
CD CD
CD CD
CD CD
CD CD
O CD
(XI CD

CD CD
o (XI
ND CD
CD CD

CD CD CD CD
CT
CD
CD
CD
O
CT
CD
©
CD
CD
CD

CD
CT
CD
CT
CD
CD
in

CD CD
CD o
CD CD
© O
CD CD
CD CD
CD CD
CD CD
C CD
CD CD
CD CD
CD CD

CT O O CD O nj CD
CD CD O CT CT CD
C O (X O CD C
CD CD CD CD CD CD CD

O o o O C
(XJ CD C ND CD O
<- CT CD r- CD (Xi CD

CD CD ND CD CD
CT CD CD CD CT <- CD
CT CD CT (X CD CD CD

(X O CT «- N- ND
O CD CD CD ix
CD CD CD CD fx m
CD CD CD CD fx m
<r cd cd cd ix
(XCDCDCTXr-
c o o cj fxCD CD CD CT fx ip,
C C CD r- X ND
CT CD CT <- X (X
in CD CD CT X O
(X CD O CD X CD

<r
co
(Z)

16-12 DEOU

Fi
gu

re
 16

-2
 (co

nt
). Co

m
pl

et
e O

ut
pu

t Li
st

in
g f

or
 Fir

st
 So

lu
tio

n

O O O Kl
xr o o
(xi o O xt
o o O in
ki O O o
o o o o
O O O KI
■o O o m
O O O KI
<- O O N-
O O O Kl
O O O m

0 0 0x3-
o o O m
o (xj o ki
O O O (XJ
O O O xX
O (xj o O
O W- O O

n o o
in O O O
in in O O
KI xj- O O
o o o o

o o o c
o o o o
0x00
o o o o
o o o o
O (xj o o
O Kl O O
0x3-0 0
xr -O O o
in o O o
O (XI O o
O O O O

o o o o
(xj o o o
N NJ O Q
o o o o
m o o o
x3- O o o
o o o
o «- o o
O KI O o
O O o o
O N oo
O O o o

o o
o o
O rxj
o txi
o o
o o
O KI
xt (XJ
(Xj <xi
o o
O (Xi

o o
o o
o o
o o
o o
o o
o o
o o
O O
o o
o o
o o

KI
o
o
c
o
o

o
(XJ
o
rxj
o
(xj
o
(XJ
o
(XJ
o
(Xi

o
o
o
o

o
(XI
o
o
o
o

o
o
o
o
o
o
in
(XI
<Xl
o
o

o
rxj
in
o
KI
xO
in
(XJ
(XI

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

o
in
o
o
o

o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
in
>O rxj
o
o

o
o
o
o
o
o
o
o
o o
o
o

o
o
c

0x0 0
O o

 NO
OO NJ
xO in O
in (\i
KI Nx O
r- O r\J
»- r— O
O (XI (xj
O KI O
O (XJ (XI

0x3-0
O O (XJ
O (XI o
O O (XI
0x3-0
O x3- (XI
o o o
O (XI (XI
O o o
O (XI (XI
o o o
O (XJ (XJ

o o o
»- o <xi
(XI o o
xJ O (XJ
«- o o
O o (XJ
>ooo
V- o (XI
(Xi o o
xt O (XJ
r- o O
O o (XJ

in
r—
KI
o
o
KI
KI
Kl
KI

in
(XJ
CXI
o

o
o
o
o
o
o

o
o
o
o
o
o
o
o
KI
(XJ
o
o

xt in O O O
xt (XJ O O O
in O O O O
«- xr O O O
KI x3 O O O
t— N- O O x3-
x3 O O O x3-
r- (XJ O O in
OOOOr-
O O O O O
O O O O O
O O O O O

O O O in o
o o o (xj o
o o o N- o
0 0 0x3-0
O o <- (XI o
O o Cx o o
4- O Kl in O
r- O -3 x? O
O O O in O
O O r- -xt o
O O O «- o
O O O O O

o
o
o
o
o o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
c
o
o
(XJ
o
o
o
o

KI
KI
o
r—
(XJ
Kl
o
(XJ
■o
Kl

o (XJ
o
(XJ
K>
(XJ
o
(XJ
in

xj- o o o o o o
m o o o o o o

O O o O x3- O
in o o o o o o
o o o o o o o
0 0 0(0000
«— o o o o o o

>n o o o xj- o
K) K- O O O (XJ O
rx ex o O in o O
fx (X o o o o o
x3- (X o O O (XI o

O w—o
o o o

o
o
c
o
(XI
(XI

o «- o
(XI o o
o o o
(xj o o
o o o
o o o
o o o
o <- o
K (X O
(XJ XT o
O o
O O o

in
L.

in

CD

ZJ
bo

o
o

o o Kl o
c
c
c

o
o
o
o
o

c
(XJ

o
o
c

o Kl
o
o
o
o

in
C-
c
o
o

o
<•
o
o
C-
o

o
o
o
o
o

16-13 DEOU

SN
U

^R
 = J

0B
16

z AC
TI

VI
TY

 # =
 02/

 / R
EP

O
R

T CD
D

E =
01

, REC
O

R
D CO

U
N

T =
O

O
O

O
lO

(D

(D
r—
Q.
E
O

16-14 DEOU

c
o

16-15 DEOU

D i scuss ion

This solution to the problem, although satisfactory for its stated purpose,
has defects. A positive non-integer value is converted to an integer value.
For example, the input value 8.83 produces the following output line:

9 362880

Negative values are accepted and processed. Since the program is written only
for positive integers, the following erroneous output line is oroduced for the
input value -6:

-6 1

Input values that are invalid or out of range terminate the run. If legitimate
input values follow such invalid inputs, the legitimate values are not
processed. Some examples of values that terminate processing are given here:

Input Value

Al

23

131073

Condi tion Raised

CONVERSION

FIXEDOVERFLOW

SIZE (in the runt ime
input routines)

In addition to the defects noted above in
although unambiguous, is not well formatted,
mentioned are not important if the purpose of the
factorials for the programmer.

input processing, the output,
Yet, clearly, the defects

program is to compute several

SECOND SOLUTION

The second solution to the defined problem is a program to be released for
general use. The input format, therefore, must be carefully defined and any
departure from the input format reported. Invalid input values must be
detected, reported, and skipped so that the processing of valid values can
cont i nue.

The programmer defines the format to be one input value per card. The
input value occupies the first two columns of the card and the remaining columns
of the card must be blank. This input format is quite rigid, but it guarantees
that only legal input values are processed. Invalid input values are detected
and a descriptive message printed.

Deck Setup

Because the program is destined for production use, the programmer obtains
a complete set of output listings for his files. The deck setup for the second
solution is given in Figure 16-3.

16-16 DE04

8 16

SNUMB J0B18
IDENT
OPTION PL1
PL1 LIST

/* FACTORIAL PROGRAM

PROGRAM TO COMPUTE THE EXACT VALUES OF GIVEN FACTORIALS.
INPUT VALUE MUST BE BETWEEN 0 AND 22, INCLUSIVE.
INPUT CARD MUST CONTAIN TWO DIGITS FOLLOWED BY 78 BLANKS.
INVALID INPUT IS DETECTED AND NOTED IN THE OUTPUT.
EXECUTION CONTINUES AFTER INVALID INPUT CARD.
NORMAL TERMINATION IS AT THE INPUT END-OF-FILE. */

P2: PROC OPT IONSCMAIN);
DCL I FIXED;
DCL S CHARC78);
DCL (SYS IN,SYS PR I NT) FILE;
DCL (ENDFILE,CONVERSION) CONDITION;
/* ESTABLISH ON-UNITS */
ON ENDFILECSYSIN) GOTO EXIT;
ON CONVERSION BEGIN;

PUT EDIT("—(BAD INPUT VALUE SKIPPED)")
(SKIP, A(2),X(21), A);

GOTO LOOP;
END;

/* PRINT TITLE AND COLUMN HEADS */
PUT EDIT("EXACT VALUES OF FACTORIALS")

(PAGE,A);
PUT ED IT("I ","FACTOR IAL(I)")

(SKIP(2),X(1),A(1),X(11),A(12));
PUT SKI P;

LOOP:

EXIT:

FACT:

/* PROCESS GIVEN VALUES */
GET EDIT(l,S)

(SKIP,P"99",A(78));
IF 0 <= I & I <= 22

THEN PUT EDIT(l,FACT(I))
(SKIP,P"Z9",X(1),P"(21)Z9");

ELSE PUT EDIT(I,"-- (INPUT OUT OF RANGE)")
(SKIP,P"Z9",X(21),A);

IF S = (78)" "
THEN PUT ED IT("(WARN I NG: COL 3-80 NOT BLANK)")

(X(1),A);
GOTO LOOP;
/* PRINT CLOSING MESSAGE */
PUT EDITCEND OF FACTORIAL OUTPUT")

(SKIP,A);

/* CALCULATE A FACTORIAL */
PROC(ARG) RETURNS(FIXED(71));

DCL ARG FIXED;
DCL RES FIXED(71);
DCL K FIXED;
d re = 1 .

DO K = 2 TO ARG;
RES = K*RES;
END;

RETURN(RES);
END;

END;

Figure 16-3. Deck Setup for Second Solution

16-17 DE04

(cont)

$ EXECUTE
$ LIMITS
$ DATA

06
10
12
00
-5
22
23
8.83
202
XI

4
4
04
$
** * EOF

ENDJOB

16

2,40K,-2K
I *

Figure 16-3 (cont). Deck Setup for Second Solution

Output Listing

The output listing for the second solution consists of 26 pages because it
includes additional listings requested by the LIST option on the $ PL1 control
card. The complete output listing is, therefore, not reproduced in this manual.
However, Figure 16-4 gives the information output on SYSPRINT as a result of the
execution of the program.

EXACT VALUES OF FACTORIALS

1 FACTORIALS 1)

6 720
10 3628800
12 U79001600

0 1
-- (BAD INPUT VALUE SKIPPED)

22 1124000727777607680000
23 -- (1NPUT OUT OF RANGE)
— — -- (BAD INPUT VALUE SKIPPED)
20 2U329020081766U0000 (WARNING: COL 3-80 NOT BLANK)

-- (BAD INPUT VALUE SKIPPED)
— —. -- (BAD INPUT VALUE SKIPPED)
— —. -- (BAD INPUT VALUE SKIPPED)

4 24
END OF FACTORIAL OUTPUT

Figure 16-4. Output of Second Solution

16-18 DE04

Input values that are invalid are not printed because such a value could,
in fact, be nonprintab1e. In this run, the invalid input values were the
following:

1

-5
8.83
XI

4
4

As previously noted, the input format is
’4’, a card with a ’0! in column 1 and a

very rigid. To enter the input
’4’ in column 2 must be given.

value

The input value ’202’ is assumed to be the value ’20’, but a warning is
issued that the remaining columns of the card are not blank. The input value
’23’ is detected by the program as being out of range.

Discuss ion

The second
following sense:

solution to the defined problem is a foolproof program in the

Any departure from the specified input format is noted and a warning
message pr i nted.

The program recovers from invalid input to continue processing valid
i npu ts.

These assertions are supported by the following features of the program:

The only value allowed by the picture is a non-negative integer.

Columns 3 - 80 of the card are checked and any nonblank
those columns causes a warning message to be printed.

character i n

An ON-unit is provided to handle the CONVERSION condition, which can
be raised by invalid input values.

The range of the positive integer value is checked in the program to
prevent the occurrence of the FIXEDOVERFLOW condition.

16-19 DE04

APPENDIX A

SERIES 60 (LEVEL 66)/6000 PL/I RESTRICTIONS

The following restrictions are present in the implementation of PL/I in the
GCOS environment.

Picture Characters

1 dent i f i e rs An identifier cannot contain either the character
or 1 @ 1 .

External Names The General Loader requires that an external name must
be six or less characters in length. Any external name
of more than six characters will be converted by the
system (see Appendix F).

File Names A file name must be one to five characters.

Picture characters must be given as capital letters.

Peripheral Devices

Line Size

BCD Files

REWRITE Statement

INDEXED Files

The paper tape reader or paper tape punch cannot be
used.

The line size of a file with the PRINT attribute cannot
exceed 136 characters.

BCD files cannot be handled with RECORD-oriented
input-output. RECORD-oriented input-output, therefore,
cannot be used for the card reader or line printer
since these devices accept only BCD code.

The REWRITE statement cannot be used for SEQUENTIAL
files.

Embedded keys are the only type of keys in an INDEXED
file.

REGIONAL Files The va1ue of a key
pos i t i ve i n tege r.

in a REGIONAL file must be a

The length of the
KEYTO option must be

character string appearing in the
exactly 32 characters.

DECIMAL Attribute

INDEXED and
REGIONAL Files

In the interest of future file compatibility, the use
of DECIMAL data in RECORD I/O content should be
avoided. It is expected that a future version of PL/I
will use a different hardware representation for
DEC IMAL variables.

A future version of PL/I will be supported by UFAS
(refer to the UFAS manual) which utilizes different
file formats. Present files will require conversion
for compat i b i1 i ty.

ASCII Files ASCII stream files written by the PL/I system
by the COPY and SAVE directives of SRCLIB are
not compatible with time sharing subsystems
users of ASCII files.

and used
present1y
and other

DEOU

APPENDIX B

COMPARISON OF SERIES 60 (LEVEL 66)/6000 PL/I AND STANDARD PL/I

This appendix lists all known deviations of the Series 60 (Level 66)/6000
PL/I language from the draft standard as of March 1974. When this PL/I language
was specified, the ANSI/ECMA PL/I standardization committee had not completed
its definition of PL/I. Any language issue not then resolved by the standards
committee is marked by the symbol 1

Four
namely:

types of departure from the standard are covered in this appendix,

Features of standard PL/I not in this PL/I
Features restricted in this PL/I
Features implemented at variance with the standard
Extensions

The reader is assumed to be familiar with the work of the ANSI/ECMA
standardization committee.

The Mu 11ics PL/I Language Manual (Order No. AG94) specifies a language very
close to the proposed standard. It is a semi-formal definition of the Multics
PL/I language from which this PL/I system was derived. The terminology of this
appendix is consistent with that of the Multics PL/I Language Manual.

FEATURES OF STANDARD PL/I NOT IN SERIES 60 (LEVEL 66)/6000 PL/I

The following features are part of standard PL/I, but are not included in
th i s PL/ I . 1 2 3

1. The BYNAME option in the assignment statement.

2. The ’T!, ’I1, and ’Rf picture characters.

3. The TAB option and TAB format item. In this PL/I the same effect can
be obtained by control cards at execution time.

FEATURES RESTRICTED IN PL/I

The following features are restricted in this PL/I.

1. A literal constant cannot contain a scale factor (F+.n) or a default
suppression character (P).

B-l DE04

A bit string constant cannot be expressed in octal or hexadecimal, and
the bit string format has no provision for processing octal or
hexadecimal.

3. Only one prefix subscript is permitted in a label prefix.

4. The condition names defined by the language are reserved. A
user-defined condition cannot have the same name as a language-defined
cond i t i on.

5. A condition name cannot have INTERNAL scope.

6. Only one attribute set is allowed in a DEFAULT statement.

7. The extents of variables with the STATIC attribute must be decimal
integers. The expressions in the INITIAL attribute for a STATIC
variable are restricted to optionally signed literal constants, pairs
of real and imaginary signed literal constants, or the NULL and EMPTY
built-in functions.

8. The label prefix of a PROCEDURE ENTRY, or FORMAT statement cannot
contain a prefix subscript.

9. The STRING built-in function requires that its argument be a scalar or
an aggregate consisting of either packed bit string data or packed
character string data.

10. If two structures share storage, their alignment attributes must
match.

11. Only one condition name is allowed in an ON statement.

12. All condition prefixes of a statement must precede any label prefixes
of the statement.

13. An AREA variable cannot be used as the index of a DO statement.

14. DEFINED variables whose DEFINED attribute contains either ISUBS or
asterisks cannot be input or output by a GET or PUT statement that
specifies data directed transmission.

15. File constants cannot have the DIMENSION attribute.

16. If the expression of an assignment statement is a reference that
identifies a scalar string variable, then no target of the assignment
statement can identify a generation of storage that overlaps the
generation of storage of the string variable, unless it is exactly the
same generation.

Asterisk extents must be used when passing an unconnected array as an
array parameter. An unconnected array is an array whose elements are
separated from one another in storage by other values.

18. When one array shares storage with another array by simple defining,
the base reference must contain an asterisk for each dimension of the
DEF I NED ar ray.

19. The pointer value yielded by the ADDR built-in function applied to a
parameter is valid only as long as the block activation to which the
corresponding argument was passed is still active. This restriction
applies to the case in which the standard option OPTZ is given on the
$ PL1 control card.

20. The standard allows an array of scalars to be promoted to an array of
structures, but this PL/I does not allow this promotion.

B-2 DEOU

21. A simple or ISUB defined variable must have extents that equal the
corresponding extents of the base variable on which it is defined.
The standard allows the extents to be less than or equal to the
extents of the base variable.

22. In structure promotion of the form S=R or S + R, this PL/I requires that
the aggregate type of each member of S match the aggregate type of the
corresponding member of R. The standard performs aggregate promotion
for members that do not match.

*23. The DOT built-in function requires that the precision of its result be
given in the function reference.

24. Both the IGNORE option and the KEY option cannot be given in the same
READ statement.

25. The INTO option of a READ statement may not reference a VARYING
string.

FEATURES IMPLEMENTED AT VARIANCE WITH THE STANDARD

The implementation of the following features produces a different effect
than specified in the standard.

1. Return from an ON-unit entered by a signal of the AREA condition
causes the allocation to be re-attempted in the original area, without
reevaluation of the IN option.

2. The bounds of an evaluated array expression are always normalized such
that each lower bound is one and each upper bound is the number of
elements in the dimension.

3. A mismatch between the alignment attributes of a structure and a
structure parameter descriptor causes the argument to be passed
by-value rather than by-reference. The standard ignores the alignment
attributes of structures.

4. The STRINGSIZE condition is disabled by default in this PL/I, but
enabled in standard PL/I.

EXTENSIONS

The following features are included in this PL/I but are not part of

1. An identifier can contain the special character ’$’. In the case of
external names, this character has additional semantics.

2. Varying length strings can be used in simple and ISUB defining.

3. The base variable identified by a DEFINED attribute can be a BASED
variable.

4. Most restrictions on the REFER option are removed.

5. Several new built-in functions are implemented.

6. The INCLUDE macro is implemented.

B-3 DE04

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

The LOCAL attribute is allowed in all descriptors.

BASED variables can be output by a PUT statement that specifies
data-directed output.

An IN option is not required in a FREE statement when freeing a
generation of storage allocated in an area.

The RECURSIVE keyword is never required in a PROCEDURE statement. The
system always generates code for a procedure that allows recursive
calls.

The UNSPEC pseudo variable allows aggregate arguments.

Assignments and infix operations can be performed on two arrays of
unequal bounds if the number of dimensions is equal and the number of
elements in each dimension of one array is equal to the number of
elements in the corresponding dimension of the other array.

A replication factor in a PICTURE can be zero. A zero replication
factor indicates that the picture character to which it applies is to
be deleted from the normal picture produced by the translation of the
PICTURE.

A name declared with the ENVIRONMENT attribute acquires the FILE
attribute by default. A name declared with the OPTIONS attribute
acquires the ENTRY attribute by default. The standard does not give
defaults for these cases.

The COLUMN option can be used by a GET or PUT statement containing the
STRING option.

The standard considers the case in which an array is passed as an
argument to an array parameter that has different bounds but equal
extents to be an error. This PL/I assigns the argument to an array
temporary whose bounds are equal to the bounds of the array parameter.

A picture scale factor is allowed for floating point pictures.

18. The REDUCIBLE and IRREDUCIBLE attributes are allowed.

19. No delimiter is required between the keywords PICTURE or PIC and the
quoted picture in a picture attribute. No delimiter is required
between the letter P and the quoted picture in a picture format.

DE04

APPENDIX C

MEMORY REQUIREMENTS

MEMORY ESTIMATION

To estimate
compiled by this

the memory size required for the execution of a
PL/I compiler, the following items must be considered:

program

The size of the object program to be allocated.

Storage allocated dynamically at execution time for:

AUTOMATIC variables
BASED variables
CONTROLLED variables
ON-un its

Library routines provided by the system at execution time.

The memory required is calculated by adding the requirements of the above items.

RECOMMENDED PROCEDURE FOR STORAGE USE

It is often difficult to predict the required memory size due to the
program logic and input data. However, after the job is executed, the system
prints the memory size that was actually used, as follows:

**31K WAS USED TO EXECUTE THIS PROGRAM.

Therefore, the recommended procedure is to specify a slightly oversized memory
requirement for the first execution of the job on the $ LIMIT control card and,
after execution, to replace that estimate by the actual memory used.

C-l DE04

MINIMUM MEMORY REQUIREMENTS

Approximate minimum
below:

memory requirements for different job types are given

Job Type Mi nimum Memory

STREAM list-directed transmission 27K

STREAM edit-directed transmission 28K

STREAM data-directed transmission SOK

RECORD CONSECUTIVE organization 16K

RECORD INDEXED organization 20K

RECORD REGIONAL organization 22K

The minimums are composed of basic run-time support routines as well as
input-output support routines. Therefore, job type combinations cannot be
predicted by simple addition. A job having files of both STREAM i ist-directed
and RECORD REGIONAL takes 29K while the combination of STREAM list-directed and
RECORD INDEXED takes 36K. A combination of STREAM 1ist-directed and
data-directed needs at least 32K and a combination of STREAM data-directed with
RECORD CONSECUTIVE needs 3UK.

C-2 DEOU

APPENDIX D

CHARACTER CONVERSION TABLES

This section contains three character conversion tables:

IBMEL to ASCII Conversion Table (Table D-l)
GBCD to ASCII Conversion Table (Table D-2)
ASCII to GBCD and IBMEL Conversion Table (Table D-3)

The first two tables provide the input conversion rules that are used for
creating a PL/I source program and for input data. The third table provides the
output conversion rules that are used for writing data out to external media.

D-l DEOU

Table D-l. Character Conversion Table (IBMEL to ASCII)

IBMEL IBMEL
Character Card

GBCD
Cha racter

GBCD GBCD
Card Internal
Punch Code

ASCII ASCII
Character Internal

Code

blank blank blank bl ank 20 b 1 ank 040
i • 11-8-2(11-0) i • 0-7-8 77 i • 041
1 8-7 1 0-6-8 76 II 042
8-3 # 3-8 13 # 043
$ 11-8-3 $ 11-3-8 53 $ 044
% 0-8-4 % 0-4-8 74 % 045
& 12 & 12 32 & 046

1 8-5 1 11-7-8 57 1 047
(12-8-5 (12-5-8 35 (050
) 11-8-5) 11-5-8 55) 051
* 11-8-4 * 11-4-8 54 * 052
+ 12-8-6 + 12-0 60 + 053
/ 0-8-3 ✓ 0-3-8 73 ✓ 054
— 11 — 11 52 — 055
• 12-8-3 • 12-3-8 33 • 056
/ 0-1 0-1 61 057
0 0 0 0 00 0 060
1 1 1 1 01 1 061
2 2 2 2 02 2 062
3 3 3 3 03 3 063
4 4 4 4 04 4 064
5 5 5 5 05 5 065
6 6 6 6 06 6 066
7 7 7 7 07 7 067
8 8 8 8 10 8 070
9 9 9 9 11 9 071
• • 8-2 • • 5-8 15 • • 072
•/ 11-8-6 •/ 11-6-8 56 • / 073

12-8-4 12-6-8 36 074
8-6 = 0-5-8 75 075

\ 0-8-6 6-8 16 076
? • 0-8-7 ? • 7-8 17 ? • 077

8-4 4-8 14 100
A 12-1 A 12-1 21 A 101
B 12-2 B 12-2 22 B 102
C 12-3 C 12-3 23 C 103
D 12-4 D 12-4 24 D 104
E 12-5 E 12-5 25 E 105
F 12-6 F 12-6 26 F 106
G 12-7 G 12-7 27 G 107
H 12-8 H 12-8 30 H 110

1 12-9 1 12-9 31 1 111
J 11-1 J 11-1 41 J 112
K 11-2 K 11-2 42 K 113
L 11-3 L 11-3 43 L 114
M 11-4 M 11-4 44 M 115
N 11-5 N 11-5 45 N 116
0 11-6 0 11-6 46 0 117
P 11-7 P 11-7 47 P 120
Q 11-8 Q 11-8 50 Q 121

DE04

Table D-l (cont). Character Conversion Table (IBMEL to ASCII)

1 BMEL
Character

1 BMEL
Card
Punch

GBCD
Character

GBCD
Card
Punch

GBCD
1nterna1

Code

ASCI 1
Cha racter

ASCI 1
1 nternal
Code

R 11-9 R 11-9 51 R 122
S 0-2 S 0-2 62 S 123
T 0-3 T 0-3 63 T 124
U 0-4 U 0-4 64 U 125
V 0-5 V 0-5 65 V 126
w 0-6 w 0-6 66 w 127
X 0-7 X 0-7 67 X 130
Y 0-8 Y 0-8 70 Y 131
Z 0-9 Z 0-9 71 Z 132

12-8-2(1L2-0) L 2-8 12 L 133
0-8-2 12-7-8 37 134

1 12-8-7] 12-4-8 34] 135
—1 11-8-7 11-0 40 A 136

—— 0-8-5 << 0-2-8 72 — 137

D-3 DEOU

Table D-2. Character Conversion Table (GBCD to ASCII)

GBCD GBCD GBCD ASCI 1 ASCI 1 1 BMEL 1 BMEL
Cha racter Card 1nternal Character 1nterna1 Character Card

Punch Code Code Punch

0 0 00 0 060 0 0
1 1 01 1 061 1 1
2 2 02 2 062 2 2
3 3 03 3 063 3 3
4 4 04 4 064 4 4
5 5 05 5 065 5 5
6 6 06 6 066 6 6
7 7 07 7 067 7 7
8 8 10 8 070 8 8
9 9 11 9 071 9 9
E 2-8 12 133 12-8-2(12-0)
3-8 13 # 043 # 8-3

4-8 14 100 Q 8-4
• • 5-8 15 • • 072 • • 8-2

6-8 16 076 0-8-6
? • 7-8 17 ? • 077 ? • 0-8-7

blank blank 20 blank 040 blank bl ank
A 12-1 21 A 101 A 12-1
B 12-2 22 B 102 B 12-2
C 12-3 23 C 103 C 12-3
D 12-4 24 D 104 D 12-4
E 12-5 25 E 105 E 12-5
F 12-6 26 F 106 F 12-6
G 12-7 27 G 107 G 12-7
H 12-8 30 H 110 H 12-8

1 12-9 31 1 111 1 12-9
& 12 32 & 046 & 12

12-3-8 33 • 056 • 12-8-3
*"l 12-4-8 34 135 1 12-8-7
(12-5-8 35 (050 (12-8-5

12-6-8 36 074 12-8-4
12-7-8 37 \ 134 0-8-2

1 11-0 40 A 136 —"1 11-8-7
J 11-1 41 J 112 J 11-1
K 11-2 42 K 113 K 11-2
L 11-3 43 L 114 L 11-3
M 11-4 44 M 115 M 11-4
N 11-5 45 N 116 N 11-5
0 11-6 46 0 117 0 11-6
P 11-7 47 P 120 P 11-7
Q 11-8 50 Q 121 Q 11-8
R 11-9 51 R 122 R 11-9

11 52 — 055 11
$ 11-3-8 53 $ 044 $ 11-8-3
* 11-4-8 54 * 052 * 11-8-4

DEOU

Table D-2 (cont). Character Conversion Table (GBCD to ASCII)

GBCD
Character

GBCD
Card
Punch

GBCD
1nterna1

Code

ASCI 1
Character

ASCI 1
1 nternal

Code

1 BMEL
Character

1 BMEL
Card
Punch

) 11-5-8 55) 051) 11-8-5
•/ 11-6-8 56 • ✓ 073 • 11-8-6
! 11-7-8 57 1 047 1 8-5
+ 12-0 60 + 053 + 12-8-6

0-1 61 057 / 0-1
s 0-2 62 s 123 s 0-2
T 0-3 63 T 124 T 0-3
U 0-4 64 U 125 U 0-4
V 0-5 65 V 126 V 0-5
w 0-6 66 w 127 w 0-6
X 0-7 67 X 130 X 0-7
Y 0-8 70 Y 131 Y 0-8
z 0-9 71 Z 132 Z 0-9

0-2-8 72 137 0-8-5
✓ 0-3-8 73 / 054 0-8-3
0/ 0-4-8 74 °/ 045 °/'o 0-8-4

0-5-8 75 — 075 s: 8-6
! 0-6-8 76 1! 042 ! 8-7
1 • 0-7-8 77 1 • 041 1 • 11-8-2(11-0)

D-5 DE04

Table D-3. Character Conversion Table (ASCII to GBCD and IBMEL)

ASC 1 1
Character

ASCI 1
1nternal

Code

GBCD
Character

GBCD
Card
Punch

GBCD
1nterna1

Code

IBMEL
Character

1 BMEL
Card
Punch

blank 040 bl ank blank 20 bl ank bl ank
i • 041 i • 0-7-8 77 i • 11-8-21
II 042 1 0-6-8 76 1 8-7
043 # 3-8 13 # 8-3
$ 044 $ 11-3-8 53 $ 11-8-3

% 045 % 0-4-8 74 g, 0-8-4
& 046 & 12 32 & 12
1 047 1 11-7-8 57 1 8-5
(050 (12-5-8 35 (12-8-5
) 051) 11-5-8 55) 11-8-5
* 052 * 11-4-8 54 * 11-8-4

053 + 12-0 60 + 12-8-6
/ 054 / 0-3-8 73 / 0-8-3

055 — 11 52 — 11
• 056 • 12-3-8 33 • 12-8-3
1 057 1 0-1 61 1 0-1
0 060 0 0 00 0 0
1 061 1 1 01 1 1
2 062 2 2 02 2 2
3 063 3 3 03 3 3
4 064 4 4 04 4 4
5 065 5 5 05 5 5
6 066 6 6 06 6 6
7 067 7 7 07 7 7
8 070 8 8 10 8 8
9 071 9 9 11 9 9
• • 072 • • 5-8 15 • • 8-2
• / 073 •✓ 11-6-8 56 •

✓ 11-8-6
074 12-6-8 36 12-8-4

— 075 0-5-8 75 s- 8-6
076 6-8 16 S 0-8-6

? 077 ? • 7-8 17 ? • 0-8-7
@ 100 4-8 14 @ 8-4
A 101 A 12-1 21 A 12-1
B 102 B 12-2 22 B 12-2
C 103 C 12-3 23 C 12-3
D 104 D 12-4 24 D 12-4
E 105 E 12-5 25 E 12-5
F 106 F 12-6 26 F 12-6
G 107 G 12-7 27 G 12-7
H 110 H 12-8 30 H 12-8

1 111 1 12-9 31 1 12-9
J 112 J 11-1 41 J 11-1
K 113 K 11-2 42 K 11-2
L 114 L 11-3 43 L 11-3
M 115 M 11-4 44 M 11-4
N 116 N 11-5 45 N 11-5
0 117 0 11-6 46 0 11-6

D-6 DEOU

Table D-3 (cont). Character Conversion Table (ASCII to GBCD and IBMEL)

ASCII ASCII GBCD
Character Internal Character

Code

GBCD GBCD IBMEL IBMEL
Card Internal Character Card
Punch Code Punch

P
Q
R
S
T
U
V
w
X
Y
Z
L

J
A

a
b
c
d
e
f
g
h
I
J
k
1
m
n
o
P
q
r
s
t
u
v
w
X
y
z

I I

120 P
121 Q
122 R
123 S
124 T
125 U
126 V
127 W
130 X
131 Y
132 Z
133 L
134 \
135]
136 |
137
140 *
141 A
142 B
143 C
144 D
145 E
146 F
147 G
150 H
151 I
152 J
153 K
154 L
155 M
156 N
157 0
160 P
161 Q
162 R
163 S
164 T
165 U
166 V
167 W
170 X
171 Y
172 Z
173 \
174 I
175 \
176 \
241 \
242 \
243 \
244
245

11-7 47
11-8 50
11- 9 51
0-2 62
0-3 63
0-4 64
0-6 66
0-6 66
0-7 67
0-8 70
0-9 71
2-8 12
12- 7-8 37
12-4-8 34
11-0 40
0-2-8 72
11- 4-8 54
12- 1 21
12-2 22
12-3 23
12-4 24
12-5 25
12-6 26
12-7 27
12-8 30
12-9 31
11-1 41
11-2 42
11-3 43
11-4 44
11-5 45
11-6 46
11-7 47
11-8 50
11- 9 51
0-2 62
0-3 63
0-4 64
0-5 65
0-6 66
0-7 67
0-8 70
0-9 71
12- 7-8 37
0-7-8 77
11-4-8 54
11-4-8 54
11-4-8 54
11-4-8 54
11-4-8 54
11-4-8 54
11-4-8 54

P
Q
R
S
T
U
V
W
X
Y
Z
e

i

—1

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
z

11-7
11-8
11- 9
0-2
0-3
0-4
0-6
0-6
0-7
0-8
0-9
12- 8-2(12-0)
0-8-2
12-8-7
11-8-7
0-8-5
11- 8-4
12- 1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11- 9
0-2
0-3
0-4
0-5
0-6

< 0-7
0-8
0-9
0-8-2
12- 8-7
0-8-2
0-8-2
0-8-2
0-8-2
0-8-2
0-8-2
0-8-2

D-7 DE04

APPENDIX E

INTERNAL REPRESENTATION OF PL/I DATA TYPES

This appendix gives the internal representation for each of the PL/I data
types in both the UNALIGNED and ALIGNED cases. The data types are given by
classification, as follows:

Ari thmet i c
String
Address
Area

The boundary requirement and default alignment are summarized for each data type
in the classification. Diagrams for the UNALIGNED and ALIGNED representation
for each data type then follow.

ARITHMETIC DATA TYPES

The arithmetic data
alignment are listed here:

types, their boundary requirements, and the i r defau1t

Prec,
Boundary Requ i red

ALIGNED
Defau1

Al i grimeData Type UNALIGNED

REAL FIXED BINARY single
doub1e

b i t
b i t

word
even-word

ALIGNED
ALIGNED

REAL FIXED DECIMAL byte word ALIGNED
REAL FLOAT BINARY single

doub1e
b i t
b i t

word
even-word

ALIGNED
ALIGNED

REAL FLOAT DECIMAL byte word ALIGNED
COMPLEX FIXED BINARY single

doub1e
b i t
bi t

even-wo rd
even-word

ALIGNED
ALIGNED

COMPLEX FIXED DECIMAL byte word ALIGNED
COMPLEX FLOAT BINARY single

doub1e
b i t
b i t

even-word
even-word

ALIGNED
ALIGNED

COMPLEX FLOAT DECIMAL byte word ALIGNED

DE04

Real Fixed-Point Binary

A real fixed-point binary number of precision (p,q) is stored as a two's
complement binary number, n, as follows:

SINGLE PRECISION 0<p<36

If ALIGNED, the number is positioned at a word boundary and occupies one
word, as fol lows:

51

If UNALIGNED within a structure, the number is positioned at a bit boundary
and occupies p+1 bits, as follows:

DOUBLE PRECISION 35<p<72

If ALIGNED, the number is positioned at an even-word boundary and occupies
two words, as follows:

51

If UNALIGNED within a structure, the number is positioned at a bit boundary
and occupies p+1 bits, as follows:

51

E-2 DE04

Real Fixed-Point Decimal

A real fixed-point decimal number of precision p is stored as a string of
p+1 characters, as follows:

If ALIGNED, the number is positioned at a word boundary and occupies an
integral number of words; some trailing bytes may be unused.

If UNALIGNED within a structure, the number is positioned
boundary and occupies p+1 bytes, as follows:

at a byte

dp-l dp • • • • •

The left most character is the sign, either ’ + ’ or and the remaining
characters are from the set 101234567891.

E-3 DE04

Real Floating-Point Binary

A real floating-point binary number of precision (p,q) is stored as a two’s
complement binary fractional mantissa, m, and a two’s complement binary integer
exponent, e, as follows:

SINGLE PRECISION 0<p<28

If ALIGNED, the number is positioned at a word boundary and occupies one
word, as foilows:

0 78

m

If UNALIGNED within a structure, the number is positioned at a bit boundary
and occupies p+9 bits, as follows:

0 k k+8

DOUBLE PRECISION 27<p<64

If ALIGNED, the number is positioned at an even-word boundary and occupies
two words, as follows:

If UNALIGNED within a structure, the number is positioned at a bit boundary
and occupies p+9 bits, as follows:

The value zero is represented as m=0 and e=-128.

DE04

' Real Floati ng-Poi nt Decimal

A real floating-point decimal number of precision p is stored as a signed
decimal integer, m, and a 9-bit, two’s complement binary integer exponent, as
fo11ows:

If ALIGNED, the number is positioned at a word boundary and occupies an
integral number of words, as follows:

0___________ 9___________18___________2 7__________ 3 5

s dl C
M

co

dp
s
<--e-----> ////////////////////////

If UNALIGNED within a structure, the number is positioned at a byte
boundary and occupies p+2 bytes, as follows:

E-5 DE04

Complex Fixed-Point Binary

A complex fixed-point binary number is stored as a pair of two’s complement
binary integers. The first integer, r, is the real part of the complex value
and the second integer, i, is the imaginary part of the complex value.

SINGLE PRECISION 0<p<36

If ALIGNED, the number is positioned on an even-word boundary and occupies
two words, as follows:

If UNALIGNED within a structure, the number is positioned at a bit boundary
and occupies 2(p+1) bits, as follows:

E-6 DE04

DOUBLE PRECISION 35<p<72

If ALIGNED, the number is positioned at an even-word boundary, and occupies
four words, as follows:

If UNALIGNED within a structure, the number is positioned at a bit boundary
and occupies 2(p+1) bits, as follows:

The ending bit position x has the value M0D(p+k+l, 36).

E-7 DEOU

Complex Fixed-Point Decimal

A complex fixed-point decimal
real fixed-point decimal integers
real part of the complex value and
of the complex value.

number of precision p is stored as a pair of
of precision p. The first integer, r, is the
the second integer, i, is the imaginary part

If ALIGNED, the number is positioned at a word boundary and occupies an
integral number of words, as follows:

s

'P ///////////////////////

If UNALIGNED within a structure, the number
boundary and occupies 2(p+1) bytes, as follows:

i s pos i t i oned at a byte

E-8 DEOU

Complex Floating-Point Binary

A complex floating-point binary number is stored as a pair of binary
floating-point numbers. The first floating-point number, r, is the real part of
the complex value and the second floating-point number, i, is the imaginary part
of the complex value.

SINGLE PRECISION 0<p<28

If ALIGNED, the number is positioned at an even-word boundary and occupies
two words, as follows:

If UNALIGNED within a structure,
and occupies 2(p+9) bits, as follows:

the number is positioned at a bit boundary

where x = M0D(k+2*p+17,36).

DOUBLE PRECISION 27<p<6U

If ALIGNED, the number is positioned at an even-word boundary and occupies
four words, as follows:

DEOU

If UNALIGNED within a structure,
and occupies 2(p+9) bits, as follows:

the number is positioned at a bit boundary

where x = MOD(k+2*p+17,36).

Complex Floating-Point Decimal

A complex floating-point decimal number of precision p is stored as a pair
of real floating-point decimal numbers of precision p. The first number, r, is
the real part of the complex value and the second number, i, is the imaginary
part of the complex value.

If ALIGNED, the number is positioned
integral number of words, as follows:

at a word boundary and occupies an

s e

E-10 DE04

If UNALIGNED within a structure, the number is positioned at a byte
boundary and occupies 2(p+2) bytes, as follows:

0___________9___________ 18___________21__________ 3 5

• • • s rl C
N

rp

(/) e s •
'1

STRING DATA TYPES

The string data types,
alignment are listed here:

thei r boundary requirements, and their default

Boundary Requ i r ed Defau 11
Data Type UNALIGNED ALIGNED A1i gnment

BIT bi t word UNALIGNED
CHARACTER byte word UNALIGNED
PICTURE byte word UNALIGNED
BIT VARYING word word ALIGNED
CHARACTER VARYING word word ALIGNED

Bi t-Str i ng

A bit-string of 1ength n i s stored as n consecutive bits.

If ALIGNED, the bit-string is positioned at a word boundary and occupies an
integral number of words, as follows:

b

If UNALIGNED within a structure,
boundary and occupies n bits, as follows:

the bit-string is positioned at a bit

k + n-1 35

E-ll DE04

Character-Str i ng

A character-string of length n is stored as n consecutive bytes. Each byte
contains a single 7-bit ASCII character right-justified within the byte. The
two unused bits must be zero.

If ALIGNED, the character-string is positioned at a word boundary and
occupies an integral number of words, as follows:

/////////////////////////////////

If UNALIGNED within a structure, the character-string is positioned at a
byte boundary and occupies n bytes, as follows:

PICTURED CHARACTER-STRING

A pictured character-string is represented as a character string of length
n, where n is the number of picture characters excluding the characters V and K
and the scale factor indicator F(i). For example, the picture ”999V9" is
represented by a character string of length U.

If ALIGNED, the pictured character-string is positioned at a word boundary
and occupies an integral number of words.

If UNALIGNED within a structure, the pictured character-string is
positioned at a byte boundary and occupies n bytes.

E-12 DE04

Varyi ng B i t-Str i ng

The representation of a varying bit-string in storage is independent of its
alignment. A varying bit-string of maximum length n is stored as an ALIGNED
binary integer followed by an ALIGNED bit-string. The binary integer contains
the current number of bits, m, as follows:

Varying Character-String

The representation of a varying character-string in storage is independent
of its alignment. A varying character-string of maximum length n is represented
by an ALIGNED binary integer followed by an ALIGNED non-varying character-string
of length n. The binary integer contains the current number of characters in
the string, as follows:

c 1 m-1 C m c im + 1 C .9m + 2

•
•
•

C o n-2 C ,n-1 c n //////////////

E-13 DEOU

ADDRESS DATA TYPES

The address data types,
are given below:

their boundary requirements, and default alignments

Data Type
Boundary Required
UNALIGNED ALIGNED

Defau 11
Al i gnment

LABEL word word ALIGNED
ENTRY word word ALIGNED
FORMAT word word ALIGNED
POINTER bi t word ALIGNED
OFFSET bi t word ALIGNED
FILE word word ALIGNED

Labe, l. Entry, And Format

The label, entry, and format data type have the same internal
representation. Each contains a pointer, pl, to a statement within a procedure
and a pointer, p2, that identifies the stack frame for the most recent
activation of the block immediately containing the statement located by pl. The
UNALIGNED and ALIGNED representations are the same, namely:

18

Po i nter

A pointer consists of a word address and bit offset from the start of that
wor d.

If ALIGNED, a pointer begins at a word boundary and occupies one word, as
fo11ows:

0 _____________________18________ 24_____________ 35

<-------------------w------------- > <---b---> 000000000000000

If UNALIGNED within a structure, a pointer is positioned at a bit boundary
and occupies 36 bits.

The null pattern for a pointer is:

0_____________________ 18__________24_____________ 3 5

1111111111111111111 0000000000 000000000000000

E-14 DE04

Offset

An
offsetz

offset contains a word offset, w,
b, from the start of the word.

from the start of an area, and a bit

If UNALIGNED within a structure, an offset is positioned at a bit boundary
and occupies 36 bits. If ALIGNED, an offset begins at a word boundary and
occupies one word, as follows:

000000000000000w

0

File

The UNALIGNED and ALIGNED representations for a file data type are the
same. The representation consists of a full word whose upper half is a pointer,
pl, to the file-state block, as follows:

0____________________ 18 ______________ 35

<---------------pl--------------> 00000000000000000

AREA DATA TYPE

An area data type of size k is positioned at an even-word
occupi es k words.

boundary and

An area is divided into a series of contiguous blocks by the allocation of
based variables. The first block is the occu pa t i on r e co r d. The occupation
record has the following format:

0___________________ 18_____________ 35

A 000000000000000000

B 000000000000000000

C 000000000000000000 22 words

D________ X E Y

where A is the length of the occupation record.
B is the offset of the last word of the area.
C is the offset of the next available block space minus 1.
D is the size of the next contiguous block, if one has been allocated.
X is the busy indicator for the next contiguous block.

If X = 1, the next block is currently allocated.
E is the word offset from the beginning of the area of the next contiguous

block
Y is the busy indicator for the current block.

E-15 DE04

The remaining words of the
block space made available when

occupation record are used in the management of
based variables are freed in the area.

Before any based variables are allocated, the area is zero, except for C in
the occupation record, which has the value k. When a based variable is
allocated, a block is created in the area. In this way, blocks are allocated
starting from the end of the occupation record and proceeding from low to high
addresses until the end of the area is reached. Each block begins on an even
word boundary and occupies an even number of words. If the based variable
requires n. words, where _n is odd, the block consists of n+1 words. If jn is
even, the block consists of .n+2 words. The last word of the block is called the
block trai1 er word. The format of the block trailer word is illustrated in the
diagram of the occupation record.

The number of words available for allocation in an area can be calculated,
as foilows:

• Before any based variables are allocated in an area of size k, the
amount of block space s is given, by the following formula:

s = k - 22 - M0D(k,2)

where MOD is the PL/I built-in function.

• After an initial sequence of n based variables has been a 1 located and
none freed, the remaining available block space rs is given by the
following formula:

n
rs = s + 1 + M0D(m. +1,2))

i =1 1

where rrr is the number of words required by the ±th based variable.

E-16 DEOU

APPENDIX F

EXTERNAL NAMES

This appendix describes the conversion rule applied to external names and
lists the external names reserved by the system.

CONVERSION RULE

Although in PL/I no restriction on the length of external names is imposed,
the Loader restricts the length of external names to six or less characters.
Also, the characters ’$’ and cannot be part of the external name.

To convert a PL/I external name to an acceptable
General Loader, the following rules are applied:

external name for the

1. The characters and are converted to the character For
example, ,AB_CI becomes ’.A.B.C*.

2. If the external name contains more than six characters, it is
converted to a six character name by concatenating three strings, as
fo11ows:

si!! s 2!! s3

where: si is the number of characters in the name mod 10. If the
number of characters mod 10 is zero, then si = 1 .’.

s2 is the first character of the name.

s3 is composed of the last four characters of the name.

For example, consider the following external names and their converted
names:

External Name

ABCDEFG
ABCDEFG HI
H25MODEL1
H26MODEL1

Converted External Name

7ADEFG
.AG.HI
9HDEL1
9HDEL1

DE04

Note that the last two d i fferent external names are converted to the same six
character name for the Loader. In order to be unique, names of the same length
must differ in either the first character or one of the last four characters.
Similarly, names that are distinguished from each other only by the characters
’$’ and are converted to the same external name, as follows:

External Name

$ABC
_ABC
H25MODEL$
H26MODEL_

Converted External Name

.ABC

.ABC
9HDEL.
9HDEL.

In addition to being distinct from one another, external names must be
unique with respect to reserved system names. A list of the external names
reserved by the system is given in the next section of this appendix. To assure
uniqueness, an external name must be converted and compared against the list of
system reserved names. For example, the external name 1LONGLENGTH’ cannot be
used because it is converted to the name ’.LNGTH’, which appears on the list of
reserved names.

RESERVED EXTERNAL NAMES

Table F-l lists the external names that are reserved by the system. This
list may change slightly depending on the update level of future software
releases. It is primarily composed of entry names to execution-time support
modules in the PL/I library file. A current list of that file, and other
libraries, may be generated by use of the cross reference service program .SREF.
For instructions on use of that program, see the Service Routines manual.

Table F-l. Reserved External Names

...F.L.N.. . . .S. W. .

..ABOR . . ABT ..ABT1 ..ALOC ..ANDI

..CCLS ..CMB1 ..CMC2 ..CONV . . COPN

..CREA ..CRWT ..CWRT . .EXR1 . .GBO

..GDB. .. 1 ABT . . 1 CLS . . IDEL . . IOPN

..IREA ..IRVT . . IRWT . . IWRT . .LOOK

. .MB1 . .MCI . .MN1 . .0R1 ..RABT

..RALC ..RBAC ..RCLS ..REVT ..ROPN

..RREA ..RRVT ..RRWT ..RWRT . .SBA

. .SCA . .SFCB ..SGET ..SPUT . .SSO

..ZRIT .71B25 .Al .A2 .A3

.ALLA .ALLCA .ALLOC .BCS1 .BITOP

.BLANK . BMUU .BTOP .CALSG .CAT

. CMUU .COMIO .COUNT .DBLTP .DESCI

.DTTLY . EMCP .ERFC. . ESW .EXCG.

.EXTSZ .FREE .GETAQ .GLGE .1NTET

.IOFLG .L001. .L002. .L003. .L005.

.L007. .L033. .L039. .L040. .L041.

.L0U2. .L0U3. .L045. .L046. .L0U7.

.L048. .L0U9. .L050. .L051. .L052.

.L053. .L054. .L055. .L056. .L058.

.L059. .L061. .L063. .L065. .L066.

. L06 7. .L068. .L069. .L070. .L072.

.L073. .L074. .L076. .L078. .L080.

F-2 DE04

Table F-l (cont). Reserved External Names

L082. .L083. . LG1 . LG2 .LNGTH
LOG2. .LONE. . LV .MCP .MEIS.
MVRET .N .NMORY .NTEMP .NUM
OHAR. .01 ELD .01LE. .0LLG1 .ONCOD
ONES .P.DEL . P. LOC .P.MSG .P.REA
P.REW .P.WRI .POOOO .P0001 .P0002
P0003 .POOOU .P0005 .P0006 .P0007
P0008 .P0009 .P0010 . POOH .P0013
P001U .P0015 .P0016 .P0017 .P0018
P0019 .P0020 .P0021 .P0022 .P0023
P002U .P0030 .P0031 .P0032 .P0033
P003U .P0035 .P0036 .P0037 .P0038
P0039 .POOUO .P00U1 .P00U2 .P00U3
P0044 .P00U5 .P00U6 .P00U7 .P00U8
P0049 .P0050 .P0051 .P0052 .P0053
P005U .P0055 .P0058 .P0059 .P0060
P0061 .P0062 .P0063 .P006U .P0065
P0066 .P0067 .P0068 .P0069 .P0070
P0071 .P0072 .P0073 .P007U .P0075
P0076 .P0077 .P0078 .P0079 .P0080
P0081 .P0082 .P0083 . P008U- .P0085
P0086 .P0087 .P0088 .P0089 .P0090
P0091 .P0093 .P009U .P0095 .P0096
P009 7 .P0098 .P0099 .P0100 .P0101
P0102 .P0103 .P010U .P0105 .P0106
P0107 .P0108 .P0109 .P0110 .P0111
P0112 .P0113 .P011U .P0115 .P0116
P0117 .P0118 .P0119 .P0120 .P0121
P0122 .P0123 .P012U .P0125 .P0126
P0127 .P0128 .P0129 .P0130 .P0131
P0132 .P0133 .P013U .P0135 .P0136
P0137 .P0138 .P0139 .P01U0 .P01U1
P0142 .P0143 .P01UU .P01U5 .P01U6
P01U7 .P01U8 .P01U9 .P0150 .P0151
P0152 .P0153 .P015U .P0155 .P0157
P0158 .P0159 .P0160 .P0161 .P0162
P0163 .P016U .P0165 .P0166 .P0167
P0168 .P0169 .P0170 .P0171 .P0172
P0173 .P017U .P0175 .P0176 .P0177
P0178 .P0179 .P0180 .P0181 .P0182
P0183 .P018U .P0185 .P0186 .P0187
P0188 .P0189 .P0190 .P0191 .P0192
P0193 .P019U .P0195 .P0196 .P0197
P0198 .P0199 .P0200 .P0201 .P0202
P0203 .P020U .P0205 .P0206 .P0207
P0208 .P0209 .P0210 .P0211 .P0212
P0213 .P021U .P0215 .P0216 .P0217
P0218 .P0219 .P0220 .P0221 .P0222
P0223 .P022U .P0225 .P0226 .P0227
P0228 .P0229 .P0230 .P0231 .P0232
P0233 .P023U .P0235 .P0236 .P0237
P0238 .P0239 .P02U0 .P02U1 .P02U2
P0243 .P02UU .P02U5 .P02U6 .P02U7
P02U8 .P02U9 .P0250 .P0251 .P0252
P0253 .P025U .P0255 .P0257 .P0258
P0259 .P0260 .P0261 .P0262 .P0263
P0264 .P0265 .P0266 .P0267 .P0268
P0269 .P0270 .P0271 .P0272 .P0273
P027U .P0275 .P0276 .P0278 .P0279
P0280 .P0281 .P0282 .P0283 .P028U

F-3 DEOU

Table F-l (cont). Reserved External Names

.P0285 .P0286 .P0287 .P0288 .P0289

.P0290 .P0291 .P0292 .P0293 .P0294

.P0295 .P0296 .P0297 .P0298 .P0299

.P0300 .P0301 .P0302 .P0303 .P0304

.P0305 .P0306 .P0307 .P0308 .P0309

.P0310 .P0315 .P0316 .P0317 .P0318

.P0319 .P0320 .P0321 .P0322 .P0323

.P0324 .P0325 .P0326 .P0327 .P0328

.P0329 .P0330 .P0331 .P0332 .P0333

.P0334 .P0335 .P0336 .P0337 .P0338

.P0339 .P03U0 .P0341 .P03U2 .P0343

.P0344 .P0345 .P0346 .P0347 .P0348

.P0349 .P0350 .P0351 .P0352 .P0353

.P0354 .P0356 .P0357 .P0358 .P0359

.P0360 .P0361 .P0362 .P0363 .P0364

.P0365 .P0366 .P0367 .P0368 .P0369

.P0370 .P0371 .P0372 .P0373 .P0374

.P0375 .P0376 .P0377 .P0378 .P0379

.P0380 .P0381 .P0382 .P0383 .P0384

.P0385 .P0386 .P0387 .P0388 .P0389

.P0390 .P0391 .P0392 .P0393 .POUOO

.P0401 .P0U02 .P0403 .P0U07 .P0U08

.P0409 .P0410 .P0417 .P0U18 .P0419

.P0423 .P0424 .P0425 .P0U26 .P0U28

.PADIT .PAGES .PASCB .PBACK .PBCDA

.PCTN. .PDESC .PEMP. .PFLTG . PGDL

.PI LOP .PL001 .PLOOU .PL005 .PL006

.PL007 .PL008 .PL009 .PLO1O .PL011

.PL012 .PL013 .PL01U .PL015 .PL016

.PL017 .PL018 .PL019 .PL020 .PL021

.PL022 .PL023 .PL024 .PL025 .PL026

.PL027 .PL028 .PL029 .PL030 .PL031

.PL032 .PL033 .PL03U .PL035 .PL036

.PL037 .PL038 .PL039 .PLOUO .PL041

.PL042 .PL043 .PLABT .PLMES .PMEMF

.PNTB. .PNTC. .PNTN. .PNTRM .POVFL

.PR8EC .PROPN .PROR. .PR PUT .PSETU

.PUND. . PWRPU .PZDIV .QMASK .RABT

.RBUF1 .RBUF2 .RCLSE .RDAND .RDCP2

.RDCPY .RDMOV .RDOPR .RDOR .RDXOR

.RECIO .REMI .REM2 .RGET .ROPEN

.RPDPT . RPUT .SBTTP .SCTLY .SETU.

.SGJ1N .SIND. .SOSD. .SREGS •STKHD

.STKTL .STORE .STR1 .STR2 .SX01

.SX23 .SX45 .SX67 .TAND. .TEMP

.TEMP2 .TMRAQ .TMPBP .TMPPT .TMPSZ

.TSX45 .XR2 1ACOS. 1AEDEF IATAN.
1CCOS. 1CTAN. ID.OP. 1DCOS. 1FREE.
1GCARD 1LANH. 1LG10. 10.TOP 10URCE
1PEAD. 1PG2EE 1PLATE 1PNAL. 1PNTRY
1PP2EE 1SECK. 1SOSH. 2AAND. 2AIGN.
2AIND. 2AOSD. 2ATAN. 2BHAR. 2CANH.
2CBIT. 2CINH. 2COSH. 2DAND. 2DIND.
2DOG2. 2DONE. 2DOSD. 2DRFC. 201NFO
2ORCE. 2PFSBP 2PITE. 2PLI0. 2PNPUT
2 POSE. 2PR3OS 2PREAD 3ABIT. 3A0SH.
3BITH. 3CCOS. 3DANH. 3DG10. 3D0SH.
3DORT. 3DTAN. 3FIDE. 30NKEY 30NL0C
3PATE. 3PETE. 3PP1DA 3PR30I 3PR4CS

DE04

Table F-l (cont). Reserved External Names

3PR5RI
UAND2.
UCOSH.
4OCODE
UPNTER
4PR4CI
5AITH.
5PBIT.
5PR6WR
6DINGS
6OURCE
6PHAR.
6PUND.
7DAN2.
7ERFC.
7PHAR.
7PS.L.
7SLER.
8EEXEC
8PHASE
8SENCE
9C.OP.
9OCODE
9PIME.
9SCOS.
ALLOC.
CABS.
CFMP.
CXP2.
DCFMP.
DERF.
DND
DTANH.
EXPON.
LOG.
PLINK
RGET
SNAP.
TANH.
ZASCGE

3PROR.
UBLOAD
4DANH.
4DFILE
4PONV.
UPR5RR
5DCOS.
5PEXP.
5PR7LI
6DINH.
6PALL.
6PP1SS
6RGGER
7DINH.
7CIELD
7PNENO
7PS.R.
7SNAL.
8ONKEY
8PNAME
8SRINT
9GDATE
9ONDEX
9PR. L.
9SINT#
AREA.
CAS IN.
CLOG.
DASTN.
DCLOG.
DEXP.
DS I N.
DXP1.
FREE.
LSTKBT
PLLINK
ROPEN
SORT.
XP2.
ZGEASC

3SADDR
UCANH.
UDINH.
UOTTOM
UPP1DD
UPR6WI
5DOSH.
5PLEX.
5PR9DI
6DND2.
6PDESC
6PR7LR
6SE.NO
7D0RT.
7PDLER
7PR30C
7SALUE
7UHECK
80NL0C
8PRUCC
8SRMAT
9GTIME
9 PATE.
9PR7LC
9TS.2.
ASIN.
CATAN.
CSIN.
DCABS.
DCS IN.
DI EXP.
DSINH.
DXP2.
FREEN.
PACKER
POP.
RPUT
SYSI N
XP3.
ZWATCH

3ST0R.
UCINH.
UDOSH.
UPG1DD
UPP1D0
UPRACE
5P..R.
5P0NV.
5PSET.
6D0SH.
6PDIT.
6PR8EI
6SMB0L
7DSIN.
7PEDIT
7PR5RC
7SGNAL
8C.0P.
8PEN0.
8PR6WC
8UCKER
9MDESC
9PDUMP
9PR9DC
9TS.3.
AS INH.
CEXP.
CSQRT.
DCEXP.
DCXP1.
DLOG.
DSQRT.
ERF.
I EXP.
PENTRY
PUSH.
SIN.
SYSIN#
ZAGPRT
ZWTEND

UAHAR.
UCITH.
UDTAN.
UPITE.
UPR30R
5AAGE.
5P..S.
5PRUCR
6DANH.
6IURCE
6PG1SS
6PR9DR
6SRESS
7DTAN.
7PGEN0
7PR8ER
7SI0N.
8DRFC.
8PEXT.
8PURE.
9BABLE
90CHAR
9PGNAL
9PSTAT
ADEXP.
ATAN2.
CFDP.
CXP1.
DCFDP.
DCXP2.
DMOD.
DTAN.
EXP.
LBSWRK
PI DLNK
RCLOSE
SINH.
TAN.
ZASCEL

F-5 DEOU

APPENDIX G

STRUCTURE OF THE INCLUDE FILE

This appendix describes the structure of the INCLUDE file. Five figures
are included. The first figure illustrates the general structure of the INCLUDE
file; and the remaining figures illustrate the detailed structure of the
components.

INCLUDE FILE

The INCLUDE file is structured as a random ASCII file divided into 320 word
blocks. The file consists of catalog blocks and data blocks. The catalog
blocks are linked together. Following each catalog block are the data blocks
that contain the macro text for the macro names in the catalog block. The
format of the catalog and data blocks are given later in this section. The
general structure of the INCLUDE file is illustrated in Figure G-l.

G-l DE04

320 words

320 words

320 words

320 words

320 words

320 words

320 words

Figure G-l. Structure of the INCLUDE File.

G-2 DEOU

Catalog Blocks

A catalog block of an INCLUDE file contains a header, control information,
and up to 15 macro identifiers.

Figure G-2. Structure of a Catalog Block

The header contains the ASCII string "*SRCLIB*".

The control portion contains statistics about the macros in the file. The
contents of the control portion are described in detail in the next section of
th i s appendi x.

The macro-identifier contains the text-name associated with the macro and a
pointer to the text. A detailed description of the macro-identifier is given
later in this appendix.

G-3 DEOU

CONTROL PORTION OF THE CATALOG

The control
fol lows.

portion of the catalog linkage and summary information is as

0 NE NDE

1 LGB FGB

2 NAVB NVB

3 PC NC

where: NE is the number of macros registered.

NDE is the number of macros deleted.

LGB is the relative block address of the last macro deleted.

FGB is the relative block address of the first macro deleted.

NAVB is the number of entries available in the catalog.

NVB is the relative block address of the first unused entry
within this catalog.

PC is the relative block address of the preceding catalog.

NC is the relative block address of the next catalog.

DEOU

MACRO-I DENT I Fl ERS

Each macro-1 dentifier in the catalog portion contains the ASCII
of the text-name associated with the macro and pointers to the text,

characters
as foilows.

text-name

where: C^

LDB

FDB

D

NB

NR

are the ASCII characters of the text-name associated with the
macro. The name can consist of up to 32 characters (left
justified, space filled).

is the relative block address of the last data block
containing text associated with this text-name.

is the relative block address of the first data block
containing text associated with this text-name.

is the deletion indicator.

is the number of blocks occupied by the text associated with
thi s text-name.

is the number of records required for the representation of
the text associated with this text-name.

G-5 DE04

Data Blocks

A data block contains two words of identification, followed by a series of
fixed-length data-records. The text for a macro occupies one or more
data-records and can occupy more than one data block. The structure of the data
block is gi ven here.

20 words

20 words

BSN NBA

FRN LRN

data-record-1

data-record-2

20 words

18 words

where: BSN i s the logical serial number of the block in this macro text.

NBA i s the relative block address of the next data block.

FRN is the serial number of the firs
relative to this macro.

t data-record of the block

LRN is the serial number of the last
relative to this macro.

data-record of the block

DE04

APPENDIX H

GCOS PL/I COMPILER ERROR MESSAGES

This appendix contains the error messages that can be produced by the GCOS
PL/I compiler in the compilation of a source program. When the compiler detects
an error, it writes the error message, as it appears in this appendix, on the
error message listing. The action then taken by the compiler depends upon the
severity of the error, as follows:

Sever!ty

WARNING

SEVERITY 2

SEVERITY 3

FATAL

Action

The program compilation continues.

The error is corrected and the compilation
conti nues.

The compilation continues from the next logical
starting point, but code generation is suspended.

The compilation is terminated.

The symbol
identifying name when

in the error messages listed here is replaced by an
the PL/I compiler detects an error and prints a message.

H-l DEOU

H-2 DEOU

DEOU

o
z
<

V)
CL
O
CL
CL
UJ

z

CL
O
O
CL
a

UJ
u
CL
z>
o
«n _j

ui
z
z
o
»n

H- CL
U UJ
UJ CL
CL
CL UJ
O kJ
kJ z

• z
I— UJ
z> »-
a z
z *-

z
a
< CL
CD UJ

Q _
uj a
> z
— o
Lu kJ
kJ
UJ UJ
CL X

lD

<

lD M3
UJ »-
CL in
CL —•
x in
UJ QL
I UJ
>- CL
a
O UJ
kJ <7
x <

in
uj in
QL UJ
z> z
o
UJ CL
u o
o a
cl cl
x UJ

m

a ••
Lu a.
> o
UJ(X
in cl

UJ
*

CM QL
cauj

CL
OCL
CL Z
CL O

UJ

LU

UJ
X

in
CL
UJ

LU
X
c
CL

a

LU
CL
O
z

in
z

z
o
kJ

H-
z
LU
Z

tn

UJ
QL

Ch
UJ
kJ
O
CL
a

in •
in
UJ
X

&

CL
o
QL
CL
UJ

DE04

ER
RO

R 46
, SE

V
ER

IT
Y

 2
"I

M
PL

EM
EN

TA
TI

O
N

" OR
 "IM

P"
 SHO

U
LD

 BE
CH

A
N

G
ED

 TO
"O

PT
IO

N
S"

 TO
CO

N
FO

RM
 TO

ST
A

N
D

A
RD

 PL
/I

LUUJ
inIU UJ

UJ
LUUJ

CDUJ
UJ

UJ

UJLU UJm<nUJ <n

iner

oUJ UJ
UJm

UJer
UJ

LUmLU UJLU

UJ LUm
UJ

oUJ

LU <n
inin a
LU in

UJ
ar LULU UJUl

in Ulin
UJCtLUUJ

UJm
ininuiLU UI

UJ
erininin

ar oin oin

in er <nuiUIUJ
UJ2D

UI UJarUI
inUI

UI LUUJcotAUI
UIUIin ererCXin

mui
inUJu» ermui ui

UJ
LU arer
uiUJ in in

er UJ CDn inin
in ar

ui UJ

inmer

uiui
tn

UJar uimoLU

arUJUJUJ exui mex co <aCO tACO
in UIm in

m
ui exex

ar min UJ exLu aruun u>ui toin ulUJ inui inim exm o extn arer

UJinm<n inooui inUJ min txUJinex LUin erorexexar CDinoci in UJUlUI erererer uj arer
LU *AUlUJtn

ul
ar

rx
ui

UJ
er

in
LU

LU
m

LU
CX

in
in

er
ui

in
in
LU
ar

in
in

in
ui

ui
m

ui
er

ui
in

er o
o in

er
Ui

UJ
m

co
in

ui
UJ

UJ
er

UJ
er

in
ar

UJ
UJ
co

in
in
UJ

ui
<n
ui
er

ui
er

LU
m

LU
Ct

UJ
CD

UJ
tr

UJ
er

UJ
in

er
ui

er
ui

UJ
er

er
er
UJ

a
UJ

UJ
CD

Ul
er

UJ
er

in
m
LU

in
er
LU

o
er

er
o
er

ui

UJ
UJ
CD

er
ui
CD

Ul
ar

er
er

in
CD

ar
o

00
CM

UJ
<n
m

m
ui

ar
er
UJ

ui
in
i

er

O
i

er

er
muj

in er
er

m
in

cm ex
inuj ui

o

ex < ar er ar<
o »- o o
Ct 2T er uj er ui
ar >- er T exi
ui in Ui UJt-

H-5 DEOU

A^
AR

R
Ay

’o^
ST

R
U

C
TU

R
E V

A
LU

ED
 EX

PR
ES

SI
O

N
 has

 BEE
N

 fou
n

d
 in

a CO
N

TE
XT

 WH
IC

H r
eq

u
ir

es
 a

sc
al

ar
 VA

LU
E

W
A

RN
IN

G
 7S

TH
E UN

D
EC

LA
RE

D
 IDE

N
TI

FI
ER

 S H
A

S BE
EN

 CO
NT

EX
TU

AL
LY

 DE
C

LA
R

ED
 A5

A
 FIL

E C
O

N
ST

A
N

T.
 IT

W
IL

L AC
Q

U
IR

E D
EF

A
UL

T AT
TR

IB
U

TE
S

H-6 DE04

H-7 DEOU

ER
RO

R 90
» SE

V
ER

IT
Y

 3
TH

E le
ft

 sid
e o

f an
 ag

g
r

eg
at

e a
ss

ig
n

m
en

t is
 no

t a
r

ef
er

en
c

e to
 an

 ag
g

r
eg

at
e v

ar
ia

bl
e

at

3

ER
RO

R 10
4*

 SEV
ER

IT
Y

 2
TH

E TE
X

T NA
M

E 5>
FO

LL
O

W
IN

G
 ^IN

CL
U

D
E M

U
ST

 BE
A

N
 IDE

N
TI

FI
ER

 OR
A
 CH

A
R

A
C

TE
R

-S
TR

IN
G

* TH
E IN

C
LU

D
E M

A
C

R
O

 HA
S B

EE
N

 IGN
O

R
ED

H-8 DEOU

ER
RO

R 1O
5»

 SEV
ER

IT
Y

 3
IM

PL
EM

EN
TA

TI
O

N
 RE

ST
RI

CT
IO

N
* TH

IS
 STA

TE
M

EN
T EX

CE
ED

S TH
E M

A
X

IM
U

M
 OF

30
00

 TOK
EN

S AN
O

 HA
S BE

EN
 TRU

N
CA

TE
D

 AT
TH

A
T NU

M
B

ER
UJ

UJ UJ

UJ

in

o

oUJ

UJ
UJCM

Uli
UJ

UJCD UJ
UJ

m
CO UJinUJ

UJ
UJ

in
UJUJ

UJ UJ
UJUJa

in
UJ cl

uiUJ
CL

oin
UJ

UJm
inUJUJ

CDCL
CL tnUJ o

in
UJ

oUJ
moUJ UJUJ

Ui
oa

UJUJ
kAUJ

kAUJ
UJ

iH
in UJ

CL
UJm coUJ

CL
m

oUJ
CL

tA

UJ
ia

UJ
UJ

o UJin
UJ

UJ UJcoCLin
a

tnm
UJ

UJUJ CL

in
coQ CL

UJUJ
co

tA UJUJ CL

UJUJ
UJ

mcocnr\iCM
UJCL

UJ CL
<r>

UJCLCLCL
CLUJUJ CLoo inUJ

kA
mUJ UJI

UJinmm
CLCLCLCL

00CL

CLCOUJ CLUJUJ UJ
oUJ

CLm CLin CLUJUJ UJ cr CLCLCL

UJuj m UJCLUJUJ
UJUJ

kA

UJ
CL

CL
CL

UJ
CL

UJ
a

UJ
UJ
tn

UJ
CL

CL
CL
UJ

in
Uj

uj
CD

in
UJ

UJ
UJ

in
uj

UJ
CL

CL
UJ

UJ
m

CL
CL
UJ

CL
UJ

UJ
m

UJ
CL

UJ
m

UJ
in

UJ
m

UJ
UJ

UJ
in

CL
UJ

UJ
in

CL
CL

UJ
CL

UJ
CL

UJ
m

m
CL
UJ

UJ
UJ
CD

CL
UJ

CL
UJ

CL
UI

UJ
in

o
CL

UJ
CL

CL
CL
UJ

UJ
DC

CL
O

UJ
ac

in
i

CL

CL
o

CL
O

CL
O UJ

O UJ
CL

UJ
• in

— u — o
CL CL
UJ Z uj a
> o > Z.
111 •—• UJ UJ
m »— in

H-9 DEOU

ER
RO

R 11
9»

 SEV
ER

IT
Y

 3
TH

E DE
CL

A
RA

TI
O

N
 OF

$ CO
N

TA
IN

S AN
 INV

A
LI

D
 LIK

E A
TT

RI
BU

TE

cn
z
UJ

3
e
a

u_
o

cr
UJ
CD
£
ZD
Z

(A

Z
o

»—
u
z
7D

Z)
CD

UJ
X

O

LU
kJ
Z
LU
OC
LU
Li-
CU
Ct

Z

cd
LU
tn •
z> z

o
tn —•

m z kJ
LU Z

> £ z>
h- D u-

• •—• <9
Z £X a I-
O UJ < <c
— > X
►— UJ U_ b—
u tn o
z >
z> * a x
U- CXi LU

CXJ X CD
F- —• £ UJ
< D er
x er z —•
»- o 1

er lu o
>- er x uJ
m LU »— er

H-10 DE04

Z
LU
X
LU
►—

F-
in

Z
LU
X
z
o

m
m

in

x

o

LU
a
»—«
in

a
nr
LU

X
a
o
o
a
a

LU
U
x z>
o
m

u
UJ
(X
(X
o
u

s •
x lu
UJ Z
> z
z o
o<n
ux
X LU

Q.
LU
eX LU

LU <
X X

a
>UJ
CD_J

30.
UJ X
>- O
u u
UJ
I- LU
UJ X
3H

UJ u
UJ <
CDH-

Z
in o
< u
x

in
ex »-
om
rr •—i
ex in
LU (X

LU
z x
o
►-•UJ
m <9
ex <
uj m
> <n

m z uj
O X

> u
>- in
•—• <c •—•
(X X
UJ — I—
> ex
LU OIL
m ex —♦

ex
* UJ •

>O LU
m ex _j
—4 LU —•

_j a
ex —• x
OCL O
ex x <j
CX O aJ
lu ux

o
UJ
»-
a
•—i
ex
kJ
in
CD
z>
m

LU
CD

O
Z

m
o
x

a
z

a
UJ

ao u
CO LU
—• ~>

CD
ex o
o
ex LU
(X X
UJ >—

s

tfi
o

•-*
ex

<n

ex
LU

o

ex
«c
X
u

z
o

a

o
z

ex <n
H- O
in z

in uj
ex

z z
LU UJ
X
Z) a
o o
ex
< m

o
in z

r~< X

«n
o
z

a

m

a
UJ
m
o

UJ
X)

ex
o
ex
ex
UJ

o
z
z
<
kJ

UJ
kj
z
UJ
(X
LU

LU
X

<
LU
X

X
UJ

LU
m

in

z
o

kJ

kJ
LU
a
m
i
o
£3

H-ll DE04

ER
RO

R 14
8»

 SEV
ER

IT
Y

 3
ex

pr
es

si
o

n
s o

r
 ps

eu
d

o
-va

r
ia

bl
es

 ca
n

n
o

t be
 us

ed
 as

 ar
g

u
m

en
ts

 to
th

e $
ps

eu
d

o
-va

r
ia

bl
e,

 the
 ar

g
u

m
en

t m
u

st
 be

 a
va

r
ia

bl
e

a
o

<n
LU
o
o

a
UJ

LU

UJ
o

z
LU
UJ
tc

x

o
z

£

Z
UJ
flt

UJ
X

H-12 DE04

ER
RO

R 16
4,

 SEV
ER

IT
Y

 3
IN

 A R
EN

A
M

E-
O

PT
IO

N
 $ W

A
S EN

CO
U

N
TE

RE
D

 WHE
N A

CO
M

M
A

 WAS
 EX

PE
C

TE
D

. TH
E R

EN
A

M
IN

G
 HA

S BE
EN

 DE
LE

TE
D

.

o
UJ
>-
UJ

UJ
a

z
UJ
UJ
CD

</)

X

o
z

z

z
UJ
a

UJ
X

UJ
X

U-
o

LU
X

z

a
z
o
u
UJ
tn

UJ
x

z
LU
X
3:

o
UJ
a:
UJ

z
zd
o

z
LU

in

3C
m

>- z
— o
x *-*
LU F-
> X
UJ o
U) 3

UJ
* x

u\ <
>o z
»-» LU

x
x
o <
x
x z
LU »—•

•
Q
UJ

U
UJ
CL
X
UJ

tn

in
UJ
x

z
UJ
X

CL

<

z
UJ
X

a
UJ
X
LU

Z
ZD
o
u
z
LU

tn

x x
o < o
x x
X Z X
LU h 1

m <

X u_
F- o

x x
UJ •—•
> u.
UJ LU
tn x

CL

O' _J
sO LU

2D
<

a _j
o
X UJ
X X
aJ h-

u. o
X UJ
»-z

<9

oin
<n

z <
o
*-« UJ
<n cd
CX
UJ >
> <

X
<n
— z
X o

• u
UJ z
a id
DU

UZ
ZD —
Ct »-

in •
ZD

CD CD
UJ
z =
o >
»— F-
tn cl
Z X
LU UJ
ZS

QU
X

u. u_
oo •

UJ
X UJ t-
UJD <
CD-I >-
x < in
LU >
s: >

t- X
UJ X
m lu

UJ
tn
ZD

u
UJ
Xj

X
o
X
X
LU

z

in

x UJ
xx
UJ I—

H-13 DE04

H-14 DEOU

ER
RO

R 19
3,

 SEV
ER

IT
Y

 3
TH

E DE
CL

A
RA

TI
O

N
 Of

$ CO
N

TA
IN

S AN
 UN

RE
CO

G
N

IZ
A

BL
E "E

N
V

IR
O

N
M

EN
T"

 ATT
RI

BU
TE

ER
RO

R 19
4.

 SEV
ER

IT
Y

 3
CO

M
PI

LE
R ER

RO
R!

 "DE
CL

A
RE

" WA
S UN

A
BL

E TO
 FIN

D
 A D

EC
LA

RA
TI

O
N

 OF
S WH

EN
 PRO

CE
SS

IN
G

 A
D

EC
LA

R
A

TI
O

N
 OF

 AN
EN

TR
Y C

O
N

ST
A

N
T.

CO
RR

EC
T AL

L SO
U

RC
E PR

O
G

RA
M

 ERR
O

RS
 AND

 RE
C

O
M

PI
LE

. IF
TH

IS
 ME

SS
A

G
E PE

RS
IS

TS
 CO

N
TA

C
T TH

E C
O

M
PI

LE
R

 MA
IN

TE
N

A
N

C
E P

ER
SO

NN
EL

LU

ID

UJ
</) tn

UJLU LU

a
LULU

a in CD Ou LU

LU

oLU

LU II LU
LU

LU

UJ
cm

LU
LU cn LU

LU

• LU
tn

LU tnLU LU

LU
tn tnLU

LU LU
a ex

a LUtn

o LU
LU

m UJ LU CX o m
ex m LU

LU LU tn
co tn

ex LU CD LU
tn ex ex

LU LU tn

ex tn

o tn >otn LU

LU rxi LULU ex
tn m

tn CD co in ex
ex LU —

LU LU ex tnLU
LU LU

LU CD
ex

LU CO(X

in OQ LU
ex

CDrsj O CMLU

tn
ex Lu co

a lu tn ex LU oex
tn

tn
tx LU

tn LULU
LU m

LU tn

ex CD tn
tn

ex tn UJ tn

ex

m m m CM BR m exCM
LU (A ex ex

ex
tU

tn
ex ex ex exex

LU LU LU
o

uj tn LU LU LU
m tn

ex ex LU
00 mCM CM

CX (X
CM LU mCM UJ LUCM LU UJexCM CM CM

LU LU ex
ex LU LUex ex m LUex ex

LU
LU ex

m
tn

a
ID

ex
o

tx
LU

a
LU

ex
LU

UJ
ex

a
LU

LU
tn

m
tn
LU

LU
CD

UJ
m

UJ
ex

LU
CX

UJ
UJ

ex
LU

ex
LU

CX
UJ

UJ
UJ
CD

<n
tx

LU
LU
CD

O
(X

LU
ex

UJ
ex

LU
ex

UJ
T3

CX
ex
UJ

CX
ex

UJ
rs»

m
(X
LU

o
LU

tn
UJ

CX
lu a

UJ
ex

tn
UJ

□C
a
LU

tn
CX
LU

UJ
ex

UJ
ex

tn
ID
CX

uj ex
LU UJ

z UJ
LU Q
ISI O

tn uj

<n
z <n

UJ

m
Z UJ

cy »—«
OCL
ex z
:x O O

>n
a*

tn ex
ex
UJ

LU •
(X —

ex

-»u ex <—•
(Y —• (X < (X
lu ex a 1 i i <—• UJ
> i- z > CX >
lu tn LLi C LU
tn lu tn > tn

* QC

• O UJ
a uj a CM
Z Ci UJ X

>—< ex <
z tn j OH
ex *- Q. DCZ
< X CL ex >■

<1 lu tn

tn
er m ex x CX ex tn
o < o a o >- OLU
XX ex CX _J ex Ci
ex ex z CX z DC
lu tn J uj o UJ<

H-15 DE04

ER
RO

R 2O
8»

 SEV
ER

IT
Y

 3
TH

E PR
ED

IC
A

TE
 OF

TH
IS

 DEF
A

U
LT

 STA
TE

M
EN

T CO
N

TA
IN

S NO
N

-B
O

O
LE

A
N

 OP
ER

AT
O

R
S,

 THE
 STA

TE
M

EN
T HA

S B
EE

N R
EM

O
VE

D FR
O

M
 THE

PR

O
G

RA
M

.

uj x z x x
cc Ch x in UJ cc UJ uJ <
o o < co o »— _J
□'ll! X T SL CElxJ < u
XT X ZD XI F- uJ
UJ ►— UJ kA Z UJ F— Ch

Ch
UJ
in

CD

UJ
tsl
►—«
in

UJ
x

a.
o

in in
>— in
»—« tlJ

x
Z CL
»-• X

in
z: uj
o>

in t
in
uj >
x <r
a s:
x
uj in

UJ
i/) _j

CD
•—• <t
<X •—
h- X
z <
o >
o

H-16 DE04

ER
RO

R 22
1.

 SEV
ER

IT
Y

 3
A

N
 AM

BI
G

U
O

U
S RE

FE
RE

N
CE

 TO
S HA

S BE
EN

 FOU
N

D
. AD

D
IT

IO
N

A
L ST

R
U

C
TU

R
E Q

U
A

LI
FI

C
A

TI
O

N IS
 NE

C
ES

SA
RY

 TO
M

A
K

E TH
E R

EF
ER

EN
C

E
u

n
iq

u
e.

Ul

H-17 DE04

W
A

RN
IN

G
 236

A
 str

in
g

 va
lu

e h
as

 bee
n
 co

n
ve

r
te

d
 TO

A
N

 ar
it

h
m

et
ic

 va
lu

e

o

H-18 DE04

o

in
uj

Of

>

UJ
x
o
m

UJ
>
o
X

a
UJ
a

u
UJ
a

z
UJ
UJ
CD

UJ
>

X

UJ

ct
o

tn

<j

in

z
rr
□j

z

Lu
O

in

ct
o
.5

co
cn

LU
Z _l
< •
X Q.
F~ X

O
UJ \J
Ct I
O UJ
X ex

- a

o

F- UJ
kJ O

CM <—« <
ct ct

>-1— o
b- m i—
—. uj in
ac a
UJ kJ
> z —>
LU O F-
in —• <

* < in
O' >-
m z _j
CM UJ <

X z
Ct UJ Ct
O J u
□CCL F-
ar x x
iii •—i in

H-19 DE04

ER
RO

R 26
5«

 SEV
ER

IT
Y

 3
IM

PL
EM

EN
TA

TI
O

N
 RE

ST
RI

C
TI

O
N

! THE
 EMP

TY
 BU

IL
TI

N
 FUN

CT
IO

N
 CAN

N
O

T BE
 AS

SI
G

N
ED

 TO
A
 STR

U
CT

U
RE

 $

o
LU
kJ
z
LU
cl
LU

LU
CL

Z
LU
LU
CO

CL
LU
>
LU
Z

r-
o
(XJ LU

CL
<9Z>
z a
•—« LU
Z. kJ
CL O
< cl
S. CL

LU

z

z
o

»—•
a
z
o
u

<

m
LU
a
•—•
Z)
o
LU
CL

T

T
3:

X
LU

Z
o
u

<

z
LU
CL
O

LU
CL
UJ
X

• <r
m

ru o
z

□c
otn
cl —
CL
LU yfit

LU

LU
—I
CL
X
o
kJ
z

CL LU
CL X
LU h-

H-20 DE04

ER
RO

R 28
1«

 SEV
ER

IT
Y

 3
TH

E DE
CL

A
RA

TI
O

N
 OF

i CO
N

TA
IN

S AN
 INC

O
M

PL
ET

E "P
IC

TU
RE

" AT
TR

IB
U

TE

u.
o
tx.
z>
o
in

CXI CXI CXI

•4* UX O
O' * cr * O' ♦
CXI O CXI Ci cxi o

LU LU jJ
IX CO Ct LH cr tD
O Z> O T) O Z>
az tx z az
cr o a D a
LU * b J * LU *

CXI

H-21 DEOU

ER
RO

R 29
7,

 SEV
ER

IT
Y

♦U
N

U
SE

D
*

cm fxj m

oo o O
Ch * O' * o
NO no m

UJ LU
x in x in x
O Z> Q Z> O
X Z X Z X
X Z) ex ID X
LU * LU * LU

z
z
o
in
a.
LU
CL

LU
u
z
<t
z
LU

z

z

(X
LU
-J

CL
2E
O
u

LU
X

<

z
o
VJ

a
z
<

Z)
a

z>
o

z

<

LU
X

Zi
LU
X
X
ID

u
o

CO
o
m

x
o
a
a
LU

a
z

x
o
ex
nr
LU

X

x
<9
o
x
a.

LU
U
Of
z>
o
m

u
UJ
X
X
o

• •
CD _J
LU LU
»- z
z z
LU O
21 in
UJ x
_J LU
X X
x
t—«UJ

H- Z
uJ <1
>■ Z

UJ
j— >—
o z
z

<
tn z

x
UJ
_J

X
Z
o
<J

LU
o

<n
in
La.
X

tn

x

Lu
►—i

LU
_»

Q.
X
o
u I
LU
X

C
z

in
x
o
x
X
LU

X
<
X

O
X
X

»—

UJ
X
X
o

ft
er
o

<
X
LU
z
UJ

UJ
o
o
LJ

UJ
X

UJ
o
er
o
o
in

LU
X

Lu
O

LU
FSj

m

LU
X

LU
O
z>
a
LU
X

a
LU
Q
LU
LU
<J
X
LU

Z
LU
LU
CD

in

x

in
a
x
o
^5

Lu
O

UJ
Nl

iO
z
<c
X
o
o
X
a

z
D

X
<
X

UJ
X

H-22 DEOU

Ni

iX
LU
>
UJ

UI

»-«
Q.
X
r>
kJ
i

UJ
CX

Q
Z

iA
CT
o
CZ
er
LU

X
<t
tx
o
o
QC
Q

UJ

IX
Z)
o
iA

kJ
LU
er
er
o

o
Ui

V I

Z H-
Z) <J
o <
kJ H

Z
UJ o
kJ kJ
z
. 11 &•

nj cx in
LU «~

>- U. iA
'i~ Lui •—•
*—« CX lA
ex cr
UI •« UJ
> ex a.
UJ o
lO tx LU

LX &
* LU <t
st iA
—• CX iA
ro Id LU

(X *“8
OOl iA
ex z *••-*
Ct O T
Li J H

UJ

»->♦
ex
x
o
kJ
I

UJ
Of

o
z

m
a
a
er
ex
ui

X

ex
o
o
£Y
CL

UJ
kJ
CX
z>
o
m

kJ
UJ
er
ex
o
u •

• aJ
UJ Z
k9 Z
< O
ex m
D X
H- LU
tn a.

UJ H-
O kJ
o <
Z H-

z
>■ o
£X kJ
<
ex *

m o in
CL I-

> :e <n
l i i ►—<

lO
£t ex
UJ »* UJ
> ex a
UJ o
in LX LU

Ct o
* LU <

in tn
—i lx in
m lu uj

_J z
Ct »—«
oq. in
LX Z —
aoi
U.I kJ H-

a

ex — o er — o
O CL kJ OCX kJ
ex Z I ex Z I
er o jj er ou
uj kJ er uj kJ ex

ex
LD
O
er
ex

UI
kJ
(X
Z)
O
m

kJ
UJ
ex
§

kJ

C3 •
UJ _J
a ui
o z
kJ z
z o
uj in

ex
UJ UJ
CD CX

»— UJ
O kJ
z z
z <
< z
kJ LU

lA z

>-« O CL
er z
z •• o
> Cx. kJ
UJ O uJ
in ex er

er
«• uJ O

co z
—» Ct <v
m LU

_j in
uc — ex
OCL O
er z ex
er o er
UJ kJ LU

LU O
CD

in
»— in
o ui •
z ex o
z o UJ
< a nj
kJ < —•

in uj <
ui I •—

CD •-
< o z
>—-« »—i
Ct
<t Z UJ
> O CD

UJ _J
CD O CD
< O —•
_j < in

in

Ui
co

z

u.
o

•
in o
m ui
Ui NJ
a —•
o -J

uj »—»
X z

o ui
»- CD

UJ I-
cr <r
< a

tn u
uj

m <

•—«in
er
< u.
> o

kJ in
»—< uj
h- Z)

m >

ui _J
in <
o -<
< »~
kj -«
UJ z
CD ►-*

• in
uj <
z>
-J o
< UJ
> I—

—I »-«
< z
•— er
>— UI

ex
z

o
iA Z

•—» UJ
ex

in <
<

m

kJ kJ
i

< z
»_ <x

in
z z
•— o

z in
< m

ui
x er

— x
UJ

H-23 DE04

ER
RO

R 32
4,

 SEV
ER

IT
Y

 3
TH

E ST
A

TI
C V

A
RI

A
BL

E 4
H

A
S AN

 INI
TI

A
L A

TT
RI

BU
TE

 WH
IC

H
 CO

N
TA

IN
S N

0N
-C

0N
5T

A
N

T R
EP

ET
IT

IO
N

 FAC
TO

RS
 OR

IN
IT

IA
L V

A
LU

ES
.

BE
CA

U
SE

 STA
TI

C VA
RI

A
BL

ES
 ARE

 INI
TI

A
LI

ZE
D

 PRI
O

R TO
 BLO

CK
 ENT

RY
, EX

PR
ES

SI
O

N
S AR

E NO
T PE

RM
IT

TE
D

 IN
TH

E IN
IT

IA
L A

TT
RI

BU
TE

O

F ST
A

TI
C DA

TA
.

LU
Z
o

Lu
X
o
z:

z
o

LU

<

LU
20

O
LU
lO
o

z
LU
LU
CO

<n

x

&

x
x

UJ

LU
Z

z
<

s:

mx
CMO
mo

X
XX
O
X LU
XT
LUH-

Z

CM CM CM CM CM CM CM CM CM CM CM CM CM

X X X QL X X X X X X X X
UJ UJ LU LU UJ Lu Lu LU UJ UJ UJ LU
> > > 2> > > > > >

UJ UJ LU UJ UJ LU UJ LU UJ LU LU UJ LU
in in <n U) in J") in m in in in m in

<r •» ♦ • •> «r * •
CT- o f—4 CM co in 00 X o •—4
CM * m ♦ co * co * co * CO * co ♦ CO * co * co ♦ CO * ♦ #
m o co Q co o co o CO Q co o co O CO O co O CO O co O co Q CO o

UJ LU UJ LU UJ id LU LU UJ UJ UJ LU UJ
X m x in x m X m x m X m x in x in x in x in X m x in x in
O o o o o o O o OZ) o o o o o o o o oo o o o o o o
X z X z X z X z X z X X- X z x z X z x z X z X z X z
X o X o X o X o x o X o X o X o X O X o X X o x o
LU * UJ * LU * UJ * UJ * UJ * UJ * uJ * UJ * UJ * LU ♦ LU * UJ *

H-24 DE04

(XI (XI (XJ (XJ

•—• ►—< ►—« •—•
Ct Ct Ct Ct
LU LU Lu LU
> > > >
LU UJ LU LU
co in in in

ct in ct in ct in ct
O Z) OD OD o
ct z ct z az cr
Ct Z) Ct Z) Ct Z) Ct
LU * LU * UJ * LU

(XJ (XI (XJ

►—< •—« •—«
ct ct ct
LU LU LU> > >
LU UJ LU
in in in

LU mJ UJ UJ
in ct in ct in ct in
Z> O Z> O Z> O Z)
Z cr z ct z ex z
Z> Ct Z) Ct Z) Ct Z)
* LU * LU * LU *

(XJ (XJ

■4- * in ♦ in *
mo mo mo

LU IxJ UJ
cr <n cr in ct in
o z> o z> o Z)
ct z ct z ct z
Ct O Ct Z) ct o
Lu ♦ UJ * UJ ♦

CXI m in
in * in * in ♦ in
m o m o m a m

MJ UJ LU
ct in ct m ex m er
o Z) o z> o o
or z ct z ct z ct
Ct Z) Ct Z) ct Z) ct
UJ * LU * i 4 | 4c UJ

(XJ (Xi (XJ

xO 00
in * in * m *

O mo mo m <Zi
UJ UJ LU LU
in ex in ct in oc in
z> o z> o z> o
z ct z ct z oc
Z> Ct Z) Ct Z) ct
* UJ * UJ * LU *

H-25 DE04

ER
RO

R 35
9.

 SEV
ER

IT
Y

"U
N

U
SE

D
*

fXJ

O
* o *

m a mo
LU uU

cr un qc in
ozd o ID
dz 2i z
oc ZD cu d
ud * uJ *

rxi m
o * o *
mo mo

Ld LU
ct in cr ld
O ZD O ZD
Ct 2: D Z
Ct Z) Ct ZD
LU * Ld *

(M vX! XJ (XI

H-26 DE04

ER
R

O
R

 37
4,

 SEV
ER

IT
Y

"U
N

U
SE

D
*

ER
RO

R 37
5,

 SEV
ER

IT
Y

♦U

N
U

SE
D

*

f\l CXi CXJ (XJ

in
-TO
m

CL
O
CL
CL
Ld

*
Z

in
z

*

uO r- jo O' o
CO * CO * X * X * O' *
m q mo co Ci cn ci m ci

Ld i # I f y I id id
cl in cl in lx in cl cl in
O Z O Z) O Z) o z o z
CL 2C CL 2C CL CL CL Z cl -zr
CL Z CL Z CL Z CL Z cr z
Ld * Ld * Ld * UJ * Ld *

O' ♦
cn Ci

oJ
cl in
o z
IX 2C
Ct z
Ld *

H-27 DE04

ER
RO

R 39
2 »

 SEV
ER

IT
Y

*U
N

U
SE

D
*

TXJ <xj rxj fxj cxj

m lp >0
O' * O' * O' * O'*
m Q m d m o mo

■ il LU uJ LU
ct tn cl in cl kh crin
o O OZ) OZ> O D
CL Z DC 2C CL Z. CL Z
CL Z) CL Z) CCZ> trZ)
LU * LU* UJ * LU*

o
Lu

H-28 DE04

ER
RO

R 40
9,

 SEV
ER

IT
Y

 3
TH

E "T
O

” CL
A

U
SE

 *AS
 ENC

O
U

N
TE

RE
D

 TM
CE

 IN
A
 DO

-S
TA

TE
m

EN
T SP

EC
IF

IC
A

TI
O

N
. ITE

RA
TI

O
N

 HAS
 BEE

N
 OM

IT
TE

D
o
o

H-29 DE04

ER
RO

R 42
4.

 SEV
ER

IT
Y

 3
Sy

n
ta

x er
r

o
r
 in

th
e EX

PR
ES

SI
O

N
 OF

a "b
y"

 cla
u

se
 in

a do
-st

at
em

en
t c

o
n

tr
o

l,
 ite

r
at

io
n

 ha
s b

ee
n

 om
it

te
d

or
UJ

UJ
X

UJ
<n

ER
RO

R 44
0»

 SEV
ER

IT
Y

 3
SY

N
TA

X
 ERR

O
R IN

 A P
IC

TU
R

E D
EC

LA
R

ED
 FOR

 $

H-30 DE04

in
UJ

UJ
X
UJ

<
in

m
UJ

> UJ
»- X

• U.
X
UJ Z
> *-*
UJ
m x

o
* X

>D X
m uj

x
Ct <
O h-
X z
X >-
uj in

H-31 DEOlt

ER
RO

R 45
7»

 SEV
ER

IT
Y

 3
sy

n
ta

x er
r

o
r
 in

th
e c

h
ar

ac
te

r
 pic

tu
r

e d
ec

la
r

ed
 fo

r
 $

H-32 DE04

H-33 DE04

ER
RO

R SEVERITY
*u

n
u

se
d

*

H-34 DEOU

APPENDIX I

ON-CODES

This section contains the meaning of the ON-code numbers printed as a
result of the detection of an error at execution time.

The ON-code meanings are listed in the order of the associated number,
each ON-code number, the condition name and the meaning are given.

1-1 DEOU

O
N

CO
D

E CO
N

D
IT

IO
N

 NAM
E

M
EA

N
IN

G

cd
• • LU

— — Zi •
“) -) o cd

• I • I _J LU
o o i
* * * * <Z o
* ♦ ♦ * -J
O O O O •— _J

o <
x x x x z
o o o o i-
x x x x o o
x rr x cl lu ~z.

LU LU LU LU * *
Z >1 Z II Z l« Z H — l» ~
o o o o x X
X I— X I— X I— X —
X JX JX J X _J X JQ-
UJ3LLDLUDLJDXDX

in in in in lu in lu
.. Hl •• LU •• LU •• LU LU
* x 4 x 4 x i cl — cl ••
x cl -« —• * *
XI— XI— XI— x I— X h- x
LU LU LU LU X LU X LU X LU X
— in •— in Qi in o <n uj in uj

CM

* <3 jz * I— —I
I- CH o < < I— z ►— X <
LUOuU _J>I— LU‘-*LU(3>
in in <x lu <x <n in in in lu

x
o
x
x
LU

ii — it a z it - i» a

_J _J X X —I X _J X
•• ZD D LU LU LU ID LU ZD LU
i m in i— in in

UJ LU •• < •• LU •• LU ••
XXX4D4X4 X 4
X CM -J CM CM X
UH F- X < X I— X I— X
lDLULUXOXLUX lulu
cd in in o lu a m o in cd

X — — z
II O II I X I- CL X II < H

—OXO— I-
H UHOLL C3 X Z l-< I-
_1O_JO LO • _j _j
o _J Z> _J LU IU in D •• D
in in i— — i— in i in
(jj .. LU — < * < •• LU CM LU
X4X4 ZD I— DI XZ X

O O -I X _J Z <
I— O>~ O *£ CD <X »—• I— I— I—
LU _J LU _J > in OlAXKUJ
lO CDtnCDLUCD LUOtnCDiQ

X X
o o
X X
X X
uJ LU

CM co

X X X
o o
X X X
X X X
LU LU UJ

CO er

XXX
CD CD O
XXX
XXX
UJ UJ LU

X
o
X
X
LU

X
o
X
X
LU

CM CM

XXX
CD CD O
XXX
XXX
UJ LU LU

cm m
CM CM CM

1-2 DEOU

DEOU

o

A LU •• LU A LU A LU Lu UJ A UJ A LU LU O
z ct a xzxzxxxclluclxh
—> Z — —• LU X U X LU LU O
U1H4 H ® H in H X H UJ o LU I— _J _J <
OUJ F— LU U LLl< UJ LU LU O Ct O LU LU • LU
Oin o in QinQi/iQineo. q ui qll ct

UJ
w: m

lH in
Z) —
O X

LU •
> in
UJ > LU
or a f—
CL < Z)

O UJ CO • •
uj uj ct —• x -J
F— X _J Ct < LU

m Z F— < f- ct •co
•—• LU F— O • _ J «X

X Z F- I < O -J • UJ -J
Z LU < Z) O Ct UJ UJ CD
O -JIQ. F— LU CL CD CL • < Ct
—• Q. F— F— — F- << _J _J UJ
F— E I < UJ JH UJ _J
< —• Ct O O X CD Ct —’
rsj UJ CL —• Ct Z <UJ<
-* >- F— O OZHUJO»»_IJX
z _i < z cr zo —i uj —• f-
< F— LU <t OOZ34_JLUQ_Ct4

— O Z Ct OZCtUJUJCD<UJ£XUJ
O Ct LU O_J LU < I CD < F- O F- CL
Ct O X 4 X O < __J < <
O Ct F— —« F— Ct F— _J F— LU F— F—
OH- OOF- <OOZ> XZIZ
UJ Z) U Z Z UJ U CL (X Uj CL CL F—
Ct CO LU inXWZUJOHOZZ

Hinz UJ —• Ct —• O < Z> Z —• CL
O F— F— O — 05 —• O <t LU O —• Z
Z Z ZZ UJ LU —'Z LUI F— Z —•
►—< LU LU uj tn *—* * ■>». <t ~T~ z —• <x
CD x zm 3 H D JI UJ O Ct X z
— Z> Z) UJ _i UJ Z UJ (X F— LU CL F— —
Ct 0 O _J < I LUX CL < -J
OX Ct —• 3> F— DWZX4HUJUJXX
in < < Lu —• O —• UJ F— CD _I UJ O
UJ >- X Z X I- < — X Ct
OF- F— LU LU H- LU—’CtHHO—JTHCt

— — CLX- Z> OCZJCL 3 4 Lli
o cd cd < 3: j uj a a cl h a lx
X O OF- UJ < I X Z Z) JJ F-
O -J X UJ > H- LU LU —< o O CL UJ Z
u in < xin h j cl <t x z
UJ Z Z UJ O — >XUJ<ZZZF-<O
Ct —• O CL Ct •* U. uJF— CtF— —»AF— O

< z o < uj x — <r u.
< I- — Ct 3C F- < • ii^XXXO^X
h-ZOCLX—• U) UJ F-ZOOOAZO
< OUJ2UXXJIuJU.<XXXD<CO
O UX —.< 3: O F- F- _J O_JCtCtCtZ _J_J

CD * Lu Z) —'lDCDUJUJUJUJCDCD
LU CD •• LU

•» • • •• F— LU —• UJ ** •* •• •• ••
z CUZ<Z>ttF-<OOOOOOUO
LU LUO—JF-—• —’CtCtCtCtCXCXCX
CL Q.O<IF— £tZ_JLuU_LuLuU_U_lu
O O J >< S O X OOOOOOO

Ct

o
Z F-
o
o o<
UJ X
m f- o

zjz _j cDHXina •act
o < lu —* er ct Z) uj — x h u.
UJ O F- F- • o Z O H- CL CtOZX
F- ZOLuOU.. ZF— OOOU^UJOZ
ujinzx —oxujil tn ct cr
UJ aJ in Ct < F- LU F- O O —«m F- UJ Lu Z
1- uj uj oinaina otn<nct f-
UJCtOCt LU <C LU ZLUJZLdaUJUJ
O OUJ JZ H Z DO JUH Z oct

LU < CL in Q CD < O F— —•
UJ - J O Z J H U O in < UJ H UJ O >uj
CL —• OCX X O X UZ X LOiH XZU.= J
< LU F-CL tn Z F~UJ O CD
F-— _j _jo<>o_j.-!in —•
a f- f- o iu < o < uj f™ o f~ < <—«zm
u. _j cl uj x 00 ox in o 00 om
ozxqhujhujo LU uj LU uj uj o
A X UJ < J 4 J 4 Ll. X J J J J u. X
O F—OZ-JF— __JLUOZ—• _J _J —• O X
z <t f— _j o ►-'in —»cxluou»—*—*u_uj —«
UJ <

•• o u_ •«• •• •• •• —• •• *• —
— Lu—ZUJOO XXUJUJUJUJI-000
of-o—< ll uj uj it ll. in in in in o uj uj uj
XOX>ZXXHHOOOOXXX Ct
u z u. < > in in in in _j _j j _j o in m in
o — OXinaDODJDCDOOOOluLuU-lU

Ct Ct
o o
Ct Ct
Ct Ct
UJ UJ

cu m
4) 4)

a Ct Ct
000
Ct Ct Ct
Ct Ct Ct
UJ LU UJ

in 42 it)
4) 43 4)

UJ UJ UJ UJ UJ UJ UJ UJ LU UJ UJ LU
l_J—»_1—I -J

►—• ►—• •—» ►—« t—t »—« »—« ►—J ►—« »—4. •—« •
Lu Lu U. U. Lu U. U. LU U.U-LuLu
00000000 0000
LULUUJLUUJUjUJUJUJUJuJUJ
zzzzzzzz zzzz »—4 ►—I »—' t—4 ►—I ►—» »—4 »—« ►—< ►—« »—4 »—4
Lu U_ U. U- U. Lu Lu U_ Lu U. Lu Lu
uJ UJ UJ UJ UJ UJ UJ UJ UJ LU uj uj
00000000 0000
ZZ zzzzzz zzzz
DZ)DZ)Z3OZ>Z3 IZ Z> Z> ZJ

Ncn4in£K®Ch -4 N m 4
cm cxi fxicxjcxjcxjrxicxjcnmmm

1-4 DE04

• • o
X CD CL
Z < • X
»-« X Ld N
I- CL Z •
2D — m X
az j-
cl a a —

• • o x x
CL Id Id id CL —I

•X Z Q. Z • LU
COO ►-.<►-» OC X X CL
kJZD !—>—►— • » Id LU <
x Z3 zd x co<n a < i-

O O k O _i U O
zz x z cl »-x <atx
— < X O O O

* <n _j in zzfllu.
Z X CD »—• F~ •-* O
OO X T ZD ♦ Z Id CL
—CL I— Z CL Z CL NO
h~CL < I— OOO-^X
—id x T x zd *-< cl am
Z Oh O O I- CL O
*~*o a. x —» m cl ® cl
x^ (l m z x ljx
ld-tt~ X fr- < -OCOUJN
cd <n t <n x >». 22 x

XX»— XCDX«-«ZD m
uuDODiua z a —
-JCD O <23 I— XX
•“«< Lu tO id < Ld _J -I X id
XX XD IX Z X CD < — M

LU I— O *-* <L *—• T
._!> . u < o •— x x x m
< O < H- < m Ld U J CL
aa am a x _j z> m o •
XX Ld Ld a < o kJ
-JXXO-J OUkQLd
JZ d _J X X X kJ X X
—a >—• — — a a cl a x

— -J z _j *—» •
•- •• Ll ZD CD X X
aa kJ lj 22 <
XX LU LU Ll..........................>
XX CL CL I- r- H- H- 8—
mm m m m x x x x x x
XX X X X O O <9 <2 0

Id •

Id — • Z
Z • X id id
•—« ►— ex in
i— «n i— >- lu
a lu D I— X
O D CL CL
CL a I- CD

id a CL i-
XX o o o
lu az
in o t- id •
:□ x o x lu <n

— • Z -I —<
O kJ • Id •—

• Z X X * h- _J X CD
Ld < X T < CD Ld
_i • o J a sz < i- x
— X LU z cl — a —
Lu O d X ZD O X O D

x j o a ll < in a
I— X »—• X > x LU
ZD Id X 22 m x
X Z Ld O ZD I—
i— o < cd xoxin
ZD X o X CD Z O <
O •— X O Id X

I- ® I— X I— CD
Z LU < LU CD Z CD "D I- LU
O -J Id kJ X »-* CD < I-

CD CL — DC X kJ 22 <
in < o>kjxinxxz
ZD X LUO — -I O O
I- X O CD _J in CD —• X
< > H ►—« X in
i— o -J m _j _j x
tOkJCD<«-»X<CD<CD

x x o kJ a x <9
XX *-‘LUXl*-«lUiZLdLU
OZX_J_J>_JZ_J_!
UJ D I- - J —‘ LU _j _J <-«

- X CD »-< I »—« li

o o o •• — — -* •• —
OO CC zzzzzzz
CXI ru O' LULUXIXIXJLUX
X XXXQ.Q.CLCLXIX
<90 0 0000000

LU
_J •
— CL •
XX CD

X • X
LU X X <
X D N »U
< CD X
<n • in o

z x • z CD
O < Z CD CD X X
H- X •— X X ZD O

• H- H O 4 0U
k9 CD ZD kJ O X
z ux ox <n o
—• X X X X z
►- O CD X —
z • z x m cd x o m
•—•x ►—• • _j o in
o _j • o i o kJ h- x
Q. — CL Z »- ZD X

X O O CD Z < O X
in CL — CL CL <
X h- XH O OX »- X O
O ZD X —»kJ X »- OX kJ
H X ZX Z < X
< I— O —‘XH- X CD
z zd ^x in x in cd
OO*-»X_JXO^-«XZ
—‘ CD< D X <r —•
in z x kJO<cDkj
LU O _J X —• X_JX X
CD CD —I O X <^CO

in < —o x kJ cd x
lUDXXJJN 22 X
J H X < —• >- O X
— <x d> _j»— o m xu
X F- O < Z X < <2

in o o x _j i z xi—
O XXX_IX«-»T<

X CL _J CL — Z CD I- CD
»- O Z -I ZD

Id ZD '• O •• »••••»
•* rsi rsl kJ kJ kJ
z m in xxx
X I— I- I- e— I— I- XXX
Cl DDDDD D CD O CD
oaxcLa. xx xxx

•
X
X •
X • X •
X X Z X
ZD 22 — Z
CD <C >— *--« •

tn zd >- x
O O ZD X
Z • > X o <

X ID XI-
m z x •

• < - ox xxx
xt i- x <n x z o
kJ zd in zd m —
X X O ZD DH £

-j x o a zd •
z — in z oox x
•-♦xinc • z x cd _j

zhi x _i • m • x
o ZD I— X o — X —• kJ
—•a. oxxoTin •>-
l-l-XXX X b- •-•»- ZD
•—ZDOXXI— X CDZX
ZOXX ZD X X XI—
•— OX o CL in ZD
X Jh- u Xl-ox oxo
x < in z — a xx
CD Z X CD —• I— XZ
. -<d _j x in in o
X22O-J-JZXXOI-
_j x x < co o jd HOin
-XXU< CD o < Z ZD
x>- x in < x i— i-

xx x zd xxinmc
x x < z > »- x —• i-
<xi-kD’-'O<>xx m
0 0X1— kJ ♦- o < < x
XTXZDXinkJOOXX
XXXOX X X X — o
X X *-• xzxxxxxx
— ZD O Z X X

• • •* •• LU 2D *"• •• ••
•• I— CD X — XX
CD O Z X ►— ••••*•
C223KX»--»XXXX»-«»-»
x x x <n < xxxxxx
X X X ZD 3K Jt i

o
z

<n

m
CL

II

X * X
oxo
X o

X
o

Oi/)
x>-
OL —

X
a

X < ►“
X X z

O ZD
X »- O
i-inr

X X
xxx

X T
XXI—
o o

XX X • cox
xx z z cd tn
—• X X< I— <
X CD X X X Z X

X O OX X X
_j z z — a
< X I- JUZ
OX O T <
X o z >- ox
_J ►—» 6—«X •
ox x 3: in ZD in
— a -j >- m x

— — OT Z X
— X X ZX —x
X • — X
I— .. z .. z ZD
—»X XX XX X ID
x m x in x tn in
je. •—• o *—• O <n

x
X
CD
z

X
o
»—
m

a
o
x

x
o

o ►-
o <n

CD X
X kJ
_J »-»
X >
CD X

XX X X
O_.J J J

fr—« »—I
XX X X
QO O CD
XX X X
zz z z

XX X X CL
XX X X o
CD CD CD CD Qi

XXXXXXXXX X XXXX
_JO J d _J _J O _>_l_L_J

— — zzzzzzzzz—z— — — ——zzzz
SI x ►—' »—» *—• *—« ►—» »—• t—t »—i ►—« y »—t y y y y •—•»—< »—< ►—«
in m xxxxxxxxxxinxinocm m <n in x x x x
zz oxxxxxxxxxzxzoz zzzxxxx
<< DCCDCDCDCDCDCDCDCDCD<CD<(X< <2<<2 OCDCDCD
CL CL (XZZZZZZZZZCLZCLCLCL CL CL CL Z Z Z Z
l-l-X2DZDZDOZDOZDOOl-2D^XI-l-i-l-Z>ZDOO

O
>— I— I— >— l~ X I—
»—« *—< »—« ►—« >—< y »—»
2 22 2 2 22 — 22
m in m m in x in
Z Z Z Z Z X z
< < < < < o <
CL CL CL CL IX Z CL
I- F- I- I- I- 2D I-

X
X
<—i

o
X
z

X
o
z
ZD

X

X
o
X
z

X
X
o
z
a

m>D r- CO O' o —* N rn 4

v—4 9^4 9^4 r—I •—4

iAsO coo'O— o r- ao o o —• <xi
m m in in «o >o 43

m <• in o r- ao a*
"O L) >O 43 d O 43

0'-»cum>tin43r*ao o —
00 00

04
00

1-5 DE04

Lu F _JO < < Otn kJ if)
x < — x > o »ct 4 < *
□ N Ll O J LU kJ O O X X Lui
if) >-> U • _J LxJU'J kJ
Z _J if) Lui O — O >- X < F <
— < — ix cr Lui lu z o x cl tn x

— OF X Lui
.. H- Lui •• K < •• — F •• — kJ —
X — —IX O Lui X X tn x x XX
if) z •— if) xtntnxinin<tn

►—« ►—< Lu —■* <£ kJ —* —• (O —• —* I —•

<

O kJ 3
— < <x

X -J z o • o
OX O Lui Lui

s: — x _i z
UJ • — kJ LU — OX
_JO LU O Lu — F
— LU X X Z X F
X Z O * — X F

—« XX • tA o CD
X LuF LU O XX
LU LU —< O O LU Z kJ O
O O kJ < O X X O Z LU
Z — O LU 0 3 —
-* F _J _J X o x o x x

_JX LU LU X LU
LU X X LUO XX — X kJ
X LU LU ®X Z if) —• Lu. LU
F~ X LU F —* LU X

0X3 3 X kJ X tn
X X LU _J F Z • CD O LU F
LUXX<CD<LU< X X
X F > _J F kJtn FF
F — O X —* tn Z cd kJ
-OJLuUOiulL-^ Z
LU Z 3FX tOkJCX

* f < < in tn z x 3
OlDF-XOFX — —I —
F — Z F X LU < LU XXXX

LU kJ —• O X —* —« X
O LU X tn Lu Lu O X kJF
X O X —• —< SA 3 X LU

• F OF I U U CD < tn X J
O<O<FOLUO OOcn<
LUU F _J X —> X X 3
f o lu tn ooDtn _i o lu o x o
<_J_J F < if) LJ F LU
X 3 — Z J LU X D LU J
X < X LU LU O 3 LU XZF
kJ X 3 X -J < X & LUO

LU LU O — F < < X —I Z
tn <j x luz>o • f
< < F if) O F kJ LU kJ O if)

CL O < kJ 3 Z 3 Z X X
tn lu o 3 x — — x o o

UJ —• — O X F X U____ I kJ O
_J kJ > LU 3 — Lu X LU
— tninXF — FXO_JOXLU
X — X X LJX X < U 3

ODXLU X Z X LU —
X kJ ZOXFOO — XX
X OLJ<ZZFOZ — X F X
F Z O O Z kJ

.. kJ — •• •* X — tA
z-oz zztnzxzz
xxcnxtnxxxx xxx
xtn_jx<xx ox xxxx
3& — <0X0000000F

X
kJ >

X Z LU —
X O X F
F — F 3

F X kJ
XX XX
O O X if)

X X z
Z F F X O
O — F LJ
— F X F
F if) CC • CD F <
X X X O CD X
O kJ X < O X O

X X X O O
KI < X F ►— X XX
•—« _J X if) X F
tn f z — x o <
XX • kJ »-• X o
OX F x kJ —’ X
CDF CD Z X X X 3

o »n x »-•
x z o —• tn kj z
x —• x f x x <
F < •— kJ CD X X

F X Z CD if) OC
Z •-•OF* O

ODO kJXOOF XX
• kJ X Z X O CD

X O X X < Z O
_j x o tn a f kJ f x
•—• F o < f tn
XX XkJXX< OX

—•x zz _i s: • x »-
< kJ kJ o tn o lj
F X O F OX tn X X X
< x o oxxxa<xx
otn z omo xkjxm

x x o kJ o x
if) X X LJ X D X

m x tn • x x x _» tn cn
X 1—4 kJ •—« O XX ’
X in X if) X X F X X F
F < F < F o X Z <

X _l JU kJX x ox
XX < z O Z if)
OXF Z X X O F X

XO < _J -1 Z >- X if) Z
ZOZ O F X < o
o CD X X O F X
—• if) OXXFF _JF
F X »—• X XXXX —I
XX X4A»—O<OFZ
ofx»x s: x < o

_J O X kJ z
KI •• — X — X — z •• o •• •
tnzx ozfz-jz •— z x
OXXLJX XXXFX-J
XX xxxx—»xxx—>
XOtAXOOOZOOOX

X
X X
o _j 3
CD kJ <

»—«LU x, •
X O X F F
F X O Z X
F X F X XX
< X F 3 <

F XX 3 03
kJ F X O X O
z x — f k xi cnx
— O i F F O
Z X 3 3 *
XX if) o Cl tn F X
X F F X Z —• LJX
0 3 kJ —• X X F

CD —« F ** F X
• —* I Z F —• X

XX XX z < o o
< F Z X O **
X F OX —• Z if) X
X< U F FO in F
F < U XD
if) Z X F ZF OLD
^O Fin 3 kJ
0—3 X Z X< X
X if) CD X 3 3 F
Otn —x xx— x f
kJ — X < X XX <
XX F _J F X F
x tn f o x x m
— z <x ZFXZtn
Z < O X FX X
ox kj x a x kJ
— F Z X Z Xi O
if) — X F < OF <
tn lu z f x xx
— O X CD X CD X
X XX F F X
m x »oo cnozinF •
Z X X F CD XF X
< f 3 f x in — xm o 3
X F — Z F —• X X — Z —
F XX3 X F FX < X

LU X CD X F < X
XXXZ— < F XX
OFXOX F tnFFX

FXF kJ kJ kJ 3 F
X X X —• F —• Z X —• CD
3 X F X > < 3 — X3 — X
— > — OZ X Z <X X O
XFiXXF Z X 3Z F X

Z OX kJO F
if) x tn f x x kJ o x kJ < f

£DOUinoxxo3ooom

X
a
X
z

X
uJ
o
z
3

cu m
o o
(XI (XI

1-6 DE04

• • • LU *• LU •• kJ •• • •• X •• X •• Ct b- •• F- ••
ZZFZDZUJZUJZUZUZU Z Z Z
UJ LU «X LU C3 LU Ct LU I LU •—< LU •—• LU Lu Ct LU •—• LU
CL CL h- CL UJCL • CL •“•CLXCLXCLLUOCLCtCL
oomomonou. o^o^oqclu o cl o

a
LU
CL

J> _1H ^HCQr-a<UHOh-<O\l^> *-
< <r < oh m <c <r h z in >—

inLUinozazn < ll q * az hlu uu u
—*x —• x x h a a b- o louii i

H- t« Z> O Z Z tA U >-<^H b- <
Z Z _J _J LU n LU

HUH UJ LU UJOLUkJUJOUJ —• OJcn^t
Ct CL CL CL Z CL Z CL Ct CL UJ CL Ct CL
OOOO •—« O —• O < O QC O < o

a z uj
UJ F~ LU UJ UJ

CL • UJ Ct LU * LU
»— < LU QC I LlI »-iQ> Ul
—• kJ _J LU F Lu U. LU LU X
kJ h- uj •-« m z f-
in i— u_ kJ »— cr lj o
< o < o uj _j m ct

Z UJ Ct CD UJ CL kJ < o
<\i x < o <n x u.
<n in h x • _J uj

*- kJ b- < F- CQ UJ O
Z > Z > O -J LU
< LU CD UJ —• Z O — Z
X _J ZCtUJ b— Lu •-»
b- —• O O Cl —1 in Lu

u. uj in i— ►— uj uj
ct z z >■ — kJ x Mo
uj <n •— < in h ujoh
b- — Lu X F- _J >- •
< X UJ b- o LU Z> CD Ct J ’H
UJ b— a b- x CD O b- Z
at m b~ <-> uj z lu
o o >- in tn ct»- n- lux

b-b- UJ Ct • b- < z Ct LU
Ct <“• _J U OFF UJ Ct F-
O Q_J LU LU <C in b- z> <

lu <t in lu *-• in kJ f-
o z z —• ct u. b— uj •-* in
Ct <90 _J X in
UJ LU LU kJ Q. •—• UJ i»i in
HJ in F- rslOUJZU.4 F- •"*

m kJ —•-jet-* z ox
in < z in < in lu o cqf-
— • o > lu x z »-*

tn UJ Lu a r- X b— ct Lu
tsictkj at uj oh ct F- o
in uj •-< uj o _j z ••lu b-
>► F- > X UH H UJ I <C Z
UJ kJ UJ b~ LU in O X b~ o
it <t O *(Y H *-» CO < »-• Lil »—*

ctom z uj x b-
LU<LUZLUUJLULU~* b— O
x x x — i-x i f- z > m kJ
HUHTOHHO>-£D-< • •• UJ

ct co cam * oox
• • O •• •• «“-• >~ LU * LU • LU

• ziuctzzctmmLuz*
m UJ Ct b- UJ LU F- o x LU kJ UJ

CL LU b- Q. CL F-O_J<£LUJ X
O CL < O OCb-kJZOQC F-

o
(Xi
OJ

cxj cn
(Xi (XJ
ru <xj

CXJ
(XJ

1-7 DE04

• « UJ
O CQ (X
UJ —« —’
z • x Z>
— GO O

F 1 UJ (I UJ
— or x a tr
CO LU if)

F •—« UJ LU
X LU _J -I -I
cd cd co *""* —<
Of <X Lu Lu
(X LU F

CD if) LU LU
LU LU I I

—• O if}
U. Z — Of • Of

Z O F- o
LU Z Oil. ZU.
X < Of UJ
F • UOO2O

F U LU UJ UJ
of z z uj z f z
O UJ O Of —• *t *—•
Lu 52 Ll Fit

UJ Ci F LU if} UJ
D H LdZ C Ci
oJ < F LU if)
Z F < Of >■ —• F
— in of oc _> x _ j
Lu UJ Z> F- F F
uj m cl <j z z
0—0 Lu Z LU

X O Of — Of
F F UJ Z Of Of
_j co id z d
f z n o o <j
z — o z —
uj f <r «n f- <n
Of Z UJ CL UJ
Of O C.OF-OF-
ID — Qf LU D ID
OF O — CD X CO

CL OLu—O —
n o uj — or of rr
UJ Of F Lu F
F F UJ F >H
D UJ UJ CL < UJ <
co xf x n -z
— F LU LU
of uj <n x uj x
F- HI s f- IE F—
F F UJ I—
< F Z ••

u_ — O UJ Lu LU
UJ O Of — F- OF
X 5 F — —
f uj uj a at lu of

O Of O S o S

— D F LU F D F
4 LU Z < <

Of F a Z J H J

z
— if) m in
x — — —

— LU UJ UJ
IS —i -J -J

CD • CD CD
F <C UJ < • <
O —• rxi —»UJ —
Z Of — Of Fj Of

<t <n <i — «x
in > > m >

• — a
o of o o a

Z F Qf O Qf Qf Qf
UJ UJ o o o o o
51 O UJ U O O
uj uj or uj uj uj
F- _J Of Of Of Of
<X < SI
F Z LU ID UJ 52 UJ
in O X 2E X ID X

—« F —• F -> F
if) <D X —
— UJ U_ < LU X Lu
X Of O X o < o
F 5.

LU • UJ Of UJ UJ
z x in x oxiaxi
<—• F- LU —• —• O —‘

d in _j if) in
z Of _j < _J
O O < UJ D UJ < UJ
— Lu 1> X F X D X
F f <J F F F
CL O F < O
O UJ UJ •• •• < ••

— X UJ fD LU UJ
X LU F UJ F o F

•—« 111 ►—< F* —• UJ —•
□co-jncoacFCY
Lu UJ C2 31 LU IS O
F CL <X LU Q. LU lU LU
UJinFDCX Of Cl. Of

CL * UJ * X *
LU UJ UJ LU LU lU

UJ D O F LU F »—
X —I O — X — UJ —•
F- < < Of F Of X Of

> Jf IS F S
LU Lu * Z *
oujoacazo

x < x < <r <
LU F UJ UJ F LUX UJ
O D Of Cf F Of.
< •• Z * Of - *
inocujLuujacuj
D — CTF-JFiUF

4 < _J < 'D <f
LJOUJ<J<OnCO
X LUX O 51 O <X O
FQCF_Jin_JDD

UJ
X
LU

F F UJ fr—
— — Of <
CD J3 — F
— — D if)
X X O
O O UJ UJ <
Of Of Of F
Ol Q- — F

UJ Of O
LU UJ » _J IS Z
_J • _J F — UJ
— F —. z u. Qf in
u. z ll lu <r

LU X UJ •<
UJ X UJ UJ X F
I LU X F F Z Qf LU
F F F < Ll C J

< FQfXLU —
Of F Of in O LU LU
o m o lu f o
X Lu Q < UJ in

O *X O F —« —•
o < o lu uj in Lu x
LU LU UJ Df Z —F
Z Qf Z — if} O
»—• —• if) U_ —• UJ Z
u. < lu — UJXQ.O
uj uj x o f in
O Z O F Z

— F Z F O
F FZ-J—O —
_J Z _I — F Z F
F O F Z Z <
z — z z uj o in Qf
LUFUJOQf — — UJ
Df CL Of — Qf F CL
OfOOfFDCLZO
D ID Q. O O O
O O O O — F

F in X F D
tn F if) F LU Of CL CL
UJ UJ UJ LU F OOZ
F F in D Lu —•
O D CD X
CD LU CO UJ — LU O in
— X — X Of X Of D
QfFQfFFFLuO
F F F •—•
FLUFLUCLUUJ^
< O < O O X UJ

LU F Qf
UJ UJ UJ LU X UJ CL
X OX O F o ••
F < F < < UJ aJ

in if) -• m f x
•• D - D UJ D — F
a O F Of
<uj<tuj — ujs a
LUXLUXQfXuJZ
QfFQfFSFQf<

m

A

Z
o

in
—•

UJ

m
(XI

(<■>
m
(XJ

ID
Of
CD
o

Qf

D
Qf
O
<J
UJ
Of

Qf Qf Qf QfQj O O O ^3
Of Of Of Qf Of
Of Of Of Of Qf
UJ 'Jj UJ UJ LU

m m
(XJ ex

m
(XI ex

4-
rx

Fcocro —
• —< ex (X

m en rn ro en

o
in
(XI

— ex
in in
ex ex

(X co
<x ex
m m

1-8 DEOU

at
o

h- h- h- z -2L — _ ~
<. U < • — LU — Id ZI Q3
Q<Q LdH J F _J < I— LU LU
* H- * _J _J •—• _I — LU C? * *
b- Z H- CD — LU — lu Ct Z Hh-
LU OUJ <3 D H- LU LU LU
J U CD < m _1 O C?

a
o

o

Z — 3t LU CQZ O O Z
z z _j — or ix. id
o — G—i c?< at in
m Z LU — Z F— LU —i LU
er m o —z < er
LU er — OlAJOZ — CL
Cl LU H- _J — _J kJ — F- LU

»— < _j — z er
LU LU I— • <Q<DLd LU
u x z m —i er _i co z er
Z < LU QCf-UJ Hid o Id
<C CT 2E LU O — —>- Q. CO •
z<rujb~zu.ziu< x s~ *-
LU CL _l U < X LdD <
H- CL < HH IH z X
Zjzrz<i-<D _j er
— LU — < LU 2Z Z LU • < > o
<r lu x z er er er er z o er u.
X <nUOOLUOOOLU<S

O — Cl Lu I Lu F— — J Z Ll
— ox ox t n- i <n d? _j —
XHHkALdCOOD in — CD er
_J (XI LU — O
CL •• — •- •• C? •• ZD z — ~

H- H- A b- H- ZU- _J in b~ H- I>— ►—« k—« •—« ►—« J—« k—« <f »—• *—« LU
oooxaoxo>coo
<1 LU LU H- LU LU H-UJ CT LU LU Ct
H- * * O * * LU * •• H- * * LU

U 3 O _l J t/l — C7CJZD

er
o
LX
LX
LU

at er
o O id Uj lu , i 1 LU LU LU LU LU LU LU LU
er er s: s: s: X X z z >■ X
X er < < < < < < < < < < <L
LU LU Z z z z z z z z3* z z z

x mo oo O'O —
<xj cxi (Xi exj <xj cm co m
m men cn m co m co

(xi co m o r- ao
CO co co co co co co
co co co co co co co

er er er
o LU o o
er z er er
er er er
LU z LU LU

er er er er er
o o o o o
er er er er er
er er er er er
LU LU LU LU LU

O —
m m
co co

z
o

m —
er sz
lu m
> z
z <
O LT
O H-

CXJ CO
m m
co co

z z
o o

m m
er at
LU LU
> >
z z
o o
o o

d" m
m m
co m

1-9 DE04

in
LU

LU

in

lu in a CD
in ct

LU
Q UJ

LU O LU
ct ct

in
o LU O LU

mao
m

<n ct
oLULU

LU LU
LU LU LU

in Ct o
ct co

LU in in LU UJct

CDCt in
— LU

LU inct Ct Ct co m
LU LU Ct

LU Ct
in LU LU

OCt
Ct □c I LU

Ct a in
LUCt Ct LU L3Ct

inct LU LU <n o mA Ct
in inLU LU

in o ct a LuCt
inLU LUCXI lu m CL

CM CL
LU O

in o CL
CL LU tn LU a

in LU CD n LU
LULU LU LUCt LU

CL LU
LU LU CL m CL CL CLCL

LU oLU LU
LU

LU
LU CD m LU

in LU
LU

LU LU
LU CL LU CL Ct <9

LU LUUJ
LU LU o

LU Ct
LU CL

CL mct UJ •
ct ctct ct UJ

LU LU LU LU LU LU LU LULU LU

in
UJ

LU
Ct

Ct
UJ

CL
LU

CL
LU

CL
LU

Ct
LU

UJ
CL

LU
20

CL
LU

UJ
Ct

UJ
ct

ct
UJ

ct
LU

Ct
LU

UJ
Ct

Ct
LU

CL
LU

LU
CD

UJ
CL

in
UJ

in
LU

UJ
CL

CL
LU

CO
CM

m
LU

Ct
LU

Ct
UJ

Ct
UJ

LU
Ct

in
ct
UJ

CL
CL
UJ

in
UJ
ct

Q
LU

m
LU

LU
CD

Ct
LU

Ct
LU

3
UJ

LU
in
UJ
CL

UJ
m

CL
UJ

CL
UJ

a
ct

LU
CL

in
UJ
ct

cm m

in
UJ

o lu
— <9

m
• LU

Ct
LU

<9 OL
Z
—• UJ it
CL Ct Z
Z) A < •
ax _j a

< CD _i
as: a LU

LU
in ki
< s: uj

F- ct
O uJ Z

_J z CL <
UJ I

m

1 • a in
O CD UJ

Ct
iA ix. LU <
o o

z
Ul

xz • o UJ
uo - o Z)
<t •—' —* u
_J>-- <

LU

F- 3E u_ UJ in ujcl
m Ct ►M Ct UJ Lb

a a »—• O CL
• LU z> 57
f- at LU C3 < in f- a
UJ UJ Ct LU UJ • o o

CD
< o LU <
u O LU a in 3:
ct a ct LU
OF- u F- LU

u_ in z Z) — Z)

c
— o
m o _j
ct Jo.
lu ct u. ct ct
> O uu CL lu O
Z CL UJ CS CL
O CL — > Z CL
U UJ in O 3 LU

z
o

in
ct
LJ
>

O
u

z
o

m
CL
LU

z
o
<J

z
o

in
ct
UJ
>
z
o
u

DC Ct Ct
ooo
ct ct ct
CL CL CL
UJ UJ UJ

o b-aoo'O—• cm m m o r- ao o u
m in in in 4) o o o o o >o>o>o r-
co co ro co co co co co co co co co co co co

m •—* m so
00 O' O' O' O' O'
co co co co co co

z z z z z zz
o o o o o a o
•—• ►—« •—« ►—< •—• ►—i •—•
in in <n in in in in
CL CL CL CL CL CL CL
LU Ct UJ LU uJ UJ UJ LU
-> O>>> > > >
Z CL Z Z Z Z Z Z
o ctooo ooo
U UJ LJ LJ <J U U U

ao O' o —♦ cm m m
O' O' ooo ooo
co m 4"

1-10 DEOU

X

f- • ao • o z z cl
O CD F- CD <M CD O LU H —«
Z IU CM Id -« LU F- X x ZD X

in —« m i m lu Lu o. in
o zd id zd i J H
o a v cl < x • a:
cr lu lu lu x ih f- m o

CO id co uj co o O in • LU
A _J _i F- 2T

>< J<TJT o O CD
id <O _I <J —I Lu Z CD XI •—»
zd si in *—• in • o o • lu • f-
—i x x o • ar m ct a.
< m Ct Ct F DU. H D HO
D> X o O O O —I _J in F-

Z Ct Ct Z Ld < Id < CL
H <i H id H LU O • X F- I »—•
zjznzni-«u. o —> • x
LU CO LU Id in Q Q. Lt H in
Z >-> zz zd
O>OOOOU-*O» -- CL ••
CL —i a CL Ld U J J H_J
XZXLUXLUCtmLd — •— ZD •—
UJOuJD LdDL HJ1 HU oh

z

_j >— Ld Ld <
-J ZD _l _l X
< O < < F-

<J u
f- • ct in m z
O F- o <
Z X Ct Ct X

Ld F- o O F-
ZE F- ZD
LU CL F- F- Z
F- OZ Z Z O
»—• z *—* LU id

—• z z m
F- F- LU O O
< F- O • CL CL U
SI ZD J X X Id
Ct CL Ct LU LU • Id • (X '
o o z cd oo.
td LU F- Z X Id X Id •

• JL OFZFZCt CD
Ld in •—•*—« in »—» nf Ct. Lu Id
OUlaX^DJDF Ct
< H i u UJ F- F- < o
CL ZD in CL CD LU CD Id LU k-

OQ id id Id ct Id Ct Ct m
Ct — <9 CD LU CL CL <9 •
OCt < U O LU O Id Id Id

F CL Z Z _J CO _i CD< —I CD
2— F— 111 111 qQ
o < iu z>j>jin<fj
— O CD id id _J id -I LU —• —I
H- f- _jf- cd >—« o >—« cy rr »—«
CL Z CD LU Z X X •— < X
o z m in zd >

CtLUU_<»-»O‘~‘OO o
• LULL SZ Ct Ct LU I- DC

Z O LULU F- LU I— LU Ct LU LU
O<OLuQ. —• _J b4 _J FU L9FJ
— Q.ZOFXD ZD F- Ct

in CL Lu CL X <JXCX<XLU<

z z z z z z z z z z z z
a o o o oo ocooo o►—« »—« ►—» ►—« »—< »—« ►—» »—« f—I »—» ►—< t—«
in in m in min mmmmm m
ct cr ct ct ct ct Ltcrctxx ct
LU Ld LU Ld Ld LU Ct LU LU Ld LU LU Ld Ct Ct Ct
> > > > > > o>>> > > >oo o
z z z z z z cr z z z z z zctcr ct
O O CD O 0'0 ctooo o o octet cr
O O <J O O O Li U u U O LJ O LU LU LU

-Q F- oo O' o —• Cm < m O F- 00 0'0—* co
CD CD CD CD < «*—4 r-4 r—t r—♦ f—< e-M *—■t CM (\J CM

X
x o

LU LU Ld O —1
O O O -I Lu

Ct < ct Ct < CtCt<CtU-Ct
O -L O O CL OOCLO Ct LU LU
ct ci a: a: Ci a: cn oct lj o \i
ct zetetz ctctzct >z—•
LU LU LU LU LU LU Ld LULU O O m

< in o r- jo er* o m < m
CM CM CM CM CM CM CO CO CO CO CO CO

DE04

if}
o
s:

X
Z
o

_I
<
5:
►—«
kJ
LU
a

s:
o
x
X

z
o

in
x
LU
>
Z
o
<0

z

z h z z a
OCX OO w

• kJ H ' U-
H O »-• H H lu
< J3t < < • Of
kJ x x a m
o c >- LU LU o LU
X X CL CL Z Z
X LU CL O O Z>
< X ZE OH

CD O O O CD Z>
LU < kJ O

I •—< »—• ►—> Ci Of
CD Ct O • LU CD

• < < H Zd (Y
LU •-• > OO O X cD
ry x a »—•
O < D JHHF kJ C
H > LU LU kJZ Z LU
kJ tn«->ZLULUQ.Z

Q<LL Dll
CL LU CD XZ Z

in \f} o if} a
O < >- H Z H X
H CD CD Z *-*if} if} if}

lu fr-tn in o
X > UJ
X CD X D « a if}
H lD O OZ Z -- H
kJ O X (DC <. if} Z
C LU C C H LU
of tn x xz z z> s:
<£ *—♦ Ld H O D
X < Z X in k9
U 3C OH COH H in Of

o>n in lu <
z z h x in o o •—
»- O -• O -J -J -J Lu

a x o
x h zin Tiu uj h
O — OX HOC CC CL Of
X a kJ H c < LU
X Z O Z Of CD
LU O LU Z —*i/} m o z

LJ <9 X O k9 in O
z ex az z nz
OCX LU —• —« D
-«UJOLUXOCQCiniU
in DC H X •—«H H X
cf <. if} h- acin in c h
UJ kJ
> tn .. —
z xxxxxxxx
0000 00000
U H H H H H H H

ccctncccc
•» Of Of Of LU Of Of Of Of
LULULULU_JLULULULU
□cD.CLXoaa.xa
ooooxoooo
H * * 4 * * * *

• r-~4 11J 4 •—*<
—’ .J _J _J X -I -J . J -J
xx axHxaax

X Of < lu
s: oll.

lu < o x
o Of Of x <

o a < of
of o of o
LU X >■ <9 O
CD a CD O Of
s: ax
o h ox
Z CD LU >■

in H CD
LU O »-< CD
X LU < O
h tn of o lu

—< lu in
x < z m »-«
o Of o —• <
H -«<£ X
< Z H QC
X o — z

— o z o
H H z O
O •—' O »-< H-
Z O LJH —

Z —• O
m o 3: o z
LU kJ O Z O
o JOU
a lu x kJ

ax 3
LU • LU 3J O
U > > O _J
Z O -J X
x a ax x
X O X X Lu
x x x x a
Lu LU »—• > Z.
WNlL OD
X

•• ••
Z X X X X
O X X X X
—*<. < < <
H i 3: 3: 3T
kJ a a a a
z x x x x
O < <L < <
a., t x t x

o
m

Of
Of
X

Ch
cn

Of
o
X
Of
X

Of
o
Of
Of
X

□c

Of

X

cm m
sC

Of
X
>
o

Of
X
a
z

X
z o

3 c z
00— <
X o f} X Of
Li____ : cr 00
X X X x < z
X Of O > < Of
a x x z x o of
Z > X O X H H
o o x kJ < <n in

o CM
X co co

4-

m ,-t ru —<
co o O O
< u u r~

o
X

X X
ax 3E
—• X 3 O
> > O X
— O X X
a ax x
O X X X
x x x a
X — > z
^1X00

o —4 cm m
0000
co co cc co

I -12 DE04

.8
04

ER

RO
R

H
A

RD
W

A
RE

!
IL

LE
G

A
L OP

 COD
E FA

U
LT

 RA
IS

ED
 BY

PR
O

G
RA

M
 FAU

LT
80

5
ER

RO
R

H
A

RD
W

A
RE

:
M

EM
O

RY
 AD

D
RE

SS
 FAU

LT
 RA

IS
ED

 BY
PR

O
G

RA
M

 FA
U

LT
.

80
6

ER
RO

R
H

A
RD

W
A

RE
!

FA
U

LT
 TAG

 FAU
LT

 RA
IS

ED
 BY

PR
O

G
RA

M
 FA

U
LT

.
80

7
SI

ZE

H
A

RD
W

A
RE

:
LO

SS
 OF

h
ig

h
 OR

D
ER

 DI
G

IT
(S

).
10

00

SI
G

N
A

L
SI

G
N

A
L:

 con
d

it
io

n
 ra

is
ed

 by
 sig

n
al

 st
at

em
en

t.

1-13 DEOU

INDEX

*3 4-7.

A* 4-6.

abort codes 13-2.

access 6-1.

address calculation 14-6.

ALIGNED 11-1.

aligned attribute 11-1.

alignment 14-3Z 14-12.
default 11-2.

al location
variables 15-10.

ALTER control card 12-3.

Al ter file 4-6.

al ter listing 4-18.

ALTNO option 4-10.

argument
external procedure 13-10.
internal procedure 13-11.
parenthesized 15-18.

argument by-value 15-17.

argument descriptor 10-4.

argument list 10-3.

argument type 10-4.

ASCII option 7-3.

attribute INITIAL 15-12.

B* 4-6.

BASED variable 15-12.

BCD devices 15-21.

BCD option 7-3.

block 14-3.
multiple closure 15-6.

buffers 14-12.

BUFSIZ option 7-2.

by-value arguments 15-17.

C* 4-6.

catalog block G-3.

changing do-group index 15-8.

character
combination 15-2.
confusion 15-2.
picture 15-3.
special 15-2.

CHARSZ option 7-3.

CHECK option 4-10.

coarse i ndex 8-4.

CODE GENERATION 4-4.

COMDK option 4-10.

COMMON phase 4-3.

compi 1 er
code generation phase 4-4.
control phase 4-3.
error message editing 4-4.
files 4-4.
optimization phase 4-3.
option listing 4-19.
options 4-7.
output

a 1 ter listing 4-18.
compiling statistics 4-24.
cross reference table 4-20.
error message 4-24.
expanded source 4-19.
external symbol listing 4-21.
object program 4-23.
object program map 4-22.
option listing 4-19.
storage capacity 4-25.
storage space 4-21.

i-1 DE04

compi1 er (cont)
output

symbol table 4-20.
output listing 13-15.
phases 4-1.
semantic analysis phase 4-3.
syntax analysis phase 4-3.

compiler output listing 4-17.

compiling statistics listing 4-24.

4-6.compressed deck file

concatenat i on 14-11

conf 1i ct name 15-4.

confus ion
character
operators

15-2.
15-2.

CONGO option 5-9.

CONSECUTIVE file
attachment 7-1, 7-4.
control cards 7-3.
descriptor file 7-3.
transmission 7-7.

CONSECUTIVE organization 7-1.

control card (cont)
PRINT 6-9.
PRMFL 6-7.
PUNCH 6-9.
READ 6-8.
SAVE 12-5.
SNUMB 2-1.
special option

COPY 4-16.
OPTIONS 4-17.
SUBTITLE 4-16.
TITLE 4-16.

SRCLIB 12-2.
SYSOUT 6-8.
TAPE 6-7.
TAPE7 6-7.
TAPE9 6-7.
USE 5-10.

control format items 15-20.

control option 15-20.

conversion 15-16.
data 14-2.
errors 15-15.
loss of precision 15-16.
scale-factor 14-5.

COPY control card 12-3.

COPYRIGHT control card 4-16.
CONSECUTIVE RECORD

access 7-9.
creation 7-8.

CONSECUTIVE STREAM
access 7-6.
creation 7-5.

constant arguments 14-11.

control card
ALTER 12-3.
CONSECUTIVE file 7-3.
COPY 12-3.
CREATE 12-4.
DAC 7-10.
DATA 3-2.
DELETE 12-4.
device assignment 6-6.
ENDJOB 2-3.
EXECUTE 2-2.
FILE 6-6.
IDENT 2-2.
INDEXED file 8-9.
INITIAL 12-4.
LIMITS 2-2.
LIST 12-5.
loader 5-5.

DKEND 5-6.
ENTRY 5-6.
LIBRARY 5-7.
LINK 5-7.

MODIFY 12-5.
OBJECT 5-8.
OPTION •

oo1

inX
041

04

PL1 2-2 •

CREATE control card 12-4.

CSP DATA card 7-3.

CSYM option 4-10.

D* 4-6.

DAC control card 7-10.

DATA Card
CONSECUTIVE file 7-3.
INDEXED file 8-10.
REGIONAL file 9-6.

DATA control card 3-2.

data conversion 14-2.

data file 8-4.
size calculation 8-12, 8-15.
structure 8-4.

data types 14-1.

data-directed input-output 14-14.

debugging 13-1.

debugging constructs 14-2.

DECK option 4-10.

default alignment 11-2.

i-2 DE04

DELETE control card 12-4.

descr i ptor
argument 10-4.

descr i ptor file
CONSECUTIVE 7-3.
INDEXED 8-9.
REGIONAL 9-6.

device assignment control cards
6-6.

device requirements 6-9.

DIAGNOSTIC 4-4.

di rect access
INDEXED 8-2.
REGIONAL 9-2.

DKEND control card 5-6.

dummy record 9-1.

DUMP option 5-6.

edit-directed input-output 14-12.

eff i c i ency
choice of data type 14-1.
rules 14-1.

efficient programs 14-1.

ENDJOB control card 2-3.

ENTRY control card 5-6.

entry points
multiple 15-19.

ENTRY variable 15-9.

equivalent storage
COBOL 10-1.
COBOL-74 10-2.
FORTRAN 10-2.

ERCNT option 5-9.

error message
fatal 4-12.
warning 4-12.

error message listing 4-24.

error trace-back 13-3.
example 13-27.

errors
conversion 15-15.
evaluation 15-13.
examples 15-1.
initialization 15-9.
input-output 15-19.
procedure calls 15-17.
program constructs 15-1.

errors (cont)
program control 15-7.
program structure 15-4.

evaluation
errors 15-13.
increments 15-11.
limits 15-11.

evaluation order
assignment 15-13.
expressions 15-14.

EXECUTE control card 2-2.

execution report 13-1, 13-23.

expanded source program
4-19.

listing

external variables 14-14.

fatal error 4-12.

FFILE control card 5-7.

file
access 6-1.
al ter 4-6.
compi1 er 4-4.
compressed deck 4-6.
data 8-4.
INCLUDE 12-1, 4-7.
index 8-4.
object deck 4-6.
object program 4-6.
organizat ion 6-1.
record 6-3.
secondary system standard library

5-2.
source program 4-7.
SRCLIB input 12-1.
SRCLIB work 12-1.
stranger option 4-6.
system input 3-1.
system output 3-1, 4-7.
work 4-7.

file access
CONSECUTIVE RECORD 7-9.
di rect 8-2, 9-2.
INDEXED 8-1, 8-21.
REGIONAL 9-2, 9-11.
sequential 8-1, 9-2.

file attachment
CONSECUTIVE 7-1, 7-4.
INDEXED 8-9, 8-14.
INTERACTIVE 7-9.
REGIONAL 9-6, 9-7.

file code 6-4.

FILE control card 6-6.

file generation
CONSECUTIVE RECORD 7-8.
CONSECUTIVE STREAM 7-5.

i-3 DE04

file generation (cont)
INCLUDE file 12-6.
INDEXED 8-1.
INDEXED file 8-19.
REGIONAL 9-1, 9-10.

file organization 14-14.

file size
data file 8-12.
i ndex file 8-13.
INDEXED file 8-12.
REGIONAL file 9-7.

file structure
data 8-4.
INCLUDE file
index 8-7.
INDEXED 8-4.
REGIONAL 9-4

filler storage 11-3.

fine i ndex 8-4.

FIXED record 6-4.

f i xed-poi nt
addi tion 14-5.
division 14-4, 15-15.
multiplication 14-4.
subtraction 14-5.

FIXLNG option 7-2.

FLOATBIN option 4-14.

funtion reference 15-18.

INDEXED file
access 8-1, 8-21.
attachment 8-9, 8-14.
control cards 15-21, 8-9.
creation 8-1, 8-19.
descr i ptor file 8-9.
memory reservation 8-11.
size calculation 8-12.
structure 8-4.
transmission statements 8-2.
utilization report 8-16.

INDEXED organization 8-1.

INITIAL attribute 15-12.

INITIAL control card 12-4.

initialization 14-11.
errors 15-9.
variable 15-10.

i npu t s tr i ngs 15-20.

i npu t-outpu t
errors 15-19.
1i s ts 15-20.

input-output interface 14-15.

INTERACTIVE file
attachment 7-9.

INTERACTIVE option 7-3.

INTERACTIVE organization 7-9.

invariant computations 14-8.

global variable references 14-10.

GO option 5-9.

I* 3-1.

IBMFORM option 4-15.

IDENT control card 2-2.

i dent i f i ers
restr i ct ion 15-4.

IN 12-1.

INCLUDE file 12-1, 4-7.
creation 12-6.
modi f i cat ion 12-7.
saving 12-7.
structure G-l.
use 12 - 8.

INDEX card
INDEXED file 8-9.

i ndex file 8-4.
size calculation 8-13, 8-16.
structure 8-7.

ISP DATA card 8-10.

ISP INDEX card 8-9.

ISP RECORD card 8-10.

K* 4-6.

key offset
ca1cu1 at ion 8-15.

key size 8-11.
calculation 8-15.

L 5-2.

LABEL variable 15-9.

labels 14-11.

1ayou t
member arrays 11-10.
member scalar 11-4.
member structure 11-7.
rules 11-4.
structure 14-8.

LEAVE option 7-3.

DE04

LIBRARY control card 5-7.

LIMITS control card 2-2.

line size 15-21.

member variables 11-1.
layout 11-4.

memory diagram
overlay 5-13.

LI NESI ZE option
example

contro1 card 5-10
memory reservation

LINK

LIST control card 12-5. calculation 8-15.

LIST option 4-10.

listing
compi1 er output 13-15.

minimum storage 11-5.

mi nimum uni t 11-2.

loader map 13-21

loader
functions 5-1.

loader control cards

loader map 13-21.

locating 13-4.

•

5-5.

mixed transmission 15-21.

MODBCD option 7-2.

MODIFY control card 12-5.

MODMIX option 7-2.

multiple entry points 15-19.

arguments 13-10,
example 13-30.

automatic 13-7.
example 13-28.

external procedure

13-11.

13-5.

name
external 15-11.

NBUFFS option 7-2.

external static
internal procedure

13-5.
13-7.

NDUMP option 5-6.

internal static
label 13-6.
variables 13-4.

LOCK option 7-3.

13-6. NOGO option 5-9.

NOMAP option 5-9.

NOMSUB option 5-9.

logical expressions 14-7. NOPAC option 5-7, 5-14.

LONGFORM option 4-

LSTIN option 4-11.

LSTOU option 4-11.

LUD 6-6.

major variable
pos i t i on i ng 11-2

major variables 11

MAP option 4-11, 5-

member array
layout 11-10.

member scalar
layout 11-4.

member structure
layout 11-7.

member variable

15.

•

-1.

-9.

NOSREF option 5-9.

NSTDLB option 7-2.

NTAB option 7-3.

OBJECT control card 5-8.

object deck file 4-6.

object program file 4-6.

object program listing 4-23.

object program map 4-22.

OLEAVE option 7-3.

ON unit 13-3.

ON units 14-3.

ONCODE 13-3.

option
posi tioni ng 11-3, ASCII 7-3.

BCD 7-3.

i-5 DE04

option (cont)
BUFSIZ 7-2.
CHARSZ 7-3.
compi1 er 4-7.

ALTN 4-10.
CHECK 4-10.
COMDK 4-10.
CSYM 4-10.
DECK 4-10.
FLOATBIN 4-14.
IBMFORM 4-15.
LIST 4-10.
LONGFORM 4-15.
LSTIN 4-11.
LSTOU 4-11.
MAP 4-11.
OPTZ 4-11.
PARSE 4-11.
SEC_SYMDEF 4-15.
SEVERITY 4-11.
SHORT_CALL 4-15.
SMESSAGE 4-15.
SNUMBER 4-12.
special 4-13.
special control 4-16.
STAB 4-12.
standard control cards 4-13.
STATUS 4-16.
SYMT 4-12.
XREF 4-12.

DUMP 5-6.
FIXLNG 7-2.
INTERACTIVE 7-3.
LEAVE
loader

7-3.

CONGO 5-9.
ERCNT 5-9.
GO 5-9.
MAP 5-9.
NOGO 5-9.
NOMAP 5-9.
NOMSUB 5-9
PL1 5-9.
SYMREF 5-9

LOCK 7-3.
MODBCD 7-2.
MODMIX 7-2.
NBUFFS 7-2.
NDUMP 5-6.
NOPAC 5-7.
NSTDLB 7-2.
NTAB 7-3.
OLEAVE 7-3.
PRTREC 7-2.
RECSZ 7-3.
standard 4-8
STDLBL 7-2.
TAB 7 -3.

OPTION control card 2-2, 5-8.

OPTIONS attribute 10-8.

OPTIONS control card 4-17.

OPT IONS(MA IN) 15-7.

OPTZ option 4-11.

OPTZ phase 4-3.

organization
CONSECUTIVE 7-1.
INDEXED 8-1.
INTERACTIVE 7-9.
REGIONAL 9-1.

overflow pages 8-4.

overlay diagram 5-13.

overlay segment 5-10.

overlay segment loading 5-15.

overlay structure 5-10.

overlay tree 5-13.

P* 3-1, 4-7.

packed 10-4, 11-4.

packed property 11-4.

packing status 10-4.

page 8-4.

page buffer 8-11.

page size 15-21, 8-10.

parameter
extents 15-19.

parameter references 14-10.

parenthesized arguments 15-18.

PARSE option 4-11.

PARSE phase 4-3.

partitioned record 6-4.

path 5-14.

percent fill 8-10.

picture decimal point 15-3.

PL1 control card 2-2.

PL1 option 5-9.

PLINK program 5-15.

PLLINK program 5-15.

pos i t i on i ng 11-2.
major variable 11-2.
member variable 11-3.

precision loss 15-16.

preface cards 5-1.

i -6 DE04

PRINT control card 6-9.

PRMFL control card 6-7.

procedure
argument list 10-3.

procedure ca11
errors 15-17.

procedure interface 10-2.

program construct
errors 15-1.

program control
errors 15-7.

program structure
errors 15-4.

programmi ng errors
examples 15-1.

PRTREC option 7-2.

PUNCH control card 6-9.

quotes 15-5.

READ control card 6-8.

record
dummy 9-1.
FIXED 6-4.
parti tioned 6-4.
VARIABLE 6-4.

RECORD card
INDEXED file
REGIONAL file

8-10.
9-6.

record size 8-11.
calculation 8-14.

record structure 6-3.

record-oriented transmission 6-3.

RECSZ option 7-3.

REGIONAL
transmission statements 9-2.

REGIONAL file
access 9-2, 9-11.
attachment 9-6, 9-7.
control cards 15-21.
creation 9-1, 9-10.
descriptor file 9-6.
memory reservation 9-6.
size calculation 9-7.
structure 9-4.
utilization report 9-8.

REGIONAL organization 9-1.

required boundary 11-2, 11-5.

res tr i ct ion
i dent i f i er

root segment

RSP DATA card

15-4.

5-11.

9-6.

RSP RECORD card 9-6.

S*

SAVE control card 12-5.

s ca1e-factor
conversion 14-5.

secondary system standard library
file 5-2.

SEC—SYMDEF option 4-15.

segment 5-10.
overlay 5-11.
root 5-11.

segment loading 5-15.
PLINK 5-15.
PLLINK 5-15.

SEMANT phase 4-3.

sequential access
INDEXED 8-1.
REGIONAL 9-2.

SEVERITY option 4-11.

SHORT_CALL option 4-15.

SMESSAGE option 4-15.

SNUMB control card 2-1.

SNUMBER option 4-12.

source program file 4-7.

special option control cards 4-16.

special options 4-13.

SRCLIB control cards 12-2.

SRCLIB input file 12-1.

SRCLIB program 12-1.

SRCLIB work file 12-1.

STAB option 4-12.

stack frame
example 13-29.
format 13-8.
1i nkages 13-9.

standard calling sequences 10-8.

i-7 DE04

standard option control cards 4-13 termi nation
abnormal 13-2

standard options 4-8.

static global variables 14-10.

static variables 14-14.

STATUS option 4-16.

STDLBL option 7-2.

storage
filler 11-3.
supplementary 11-3.

storage capacity required 4-25.

storage space and'external symbol
4-21.

stranger option file 4-6.

stream data list 14-12.

stream input-output 14-11.

stream-oriented transmission 6-2,
7-4.

string assignment 14-4.

SUBSTR
arguments 15-14.
varying strings 15-15.

SUBTITLE control card 4-16.

supplementary storage 11-3.

symbol table and cross reference
4-20.

SYMREF option 5-9.

SYMT option 4-12.

SYSIN 3-1.

SYSOUT control card 6-8.

SYSPRINT 3-1.

system input/output files 3-1.

system output file 4-7.

system standard library file 5-2.

TAB option 7-3.

TAPE control card 6-7.

TAPE7 control card 6-7.

TAPE9 control card 6-7.

temporary work files 14-11.

tests 14-7.

text cards 5-1.

TITLE control card 4-16.

transfer of control 15-7.

transmission 6-2.
record 6-3.
stream 6-2, 7-4.

transmission statements 7-7.
INDEXED 8-2.
REGIONAL 9-2.

tree
overlay 5-13.
path 5-14.

UNALIGNED 11-1.

unit of representation 11-2.

unmatched delimiters 15-5.

unmatched ELSE clause 15-6.

unpacked 11-4.

USE control card 5-10.
INDEXED files 8-11.
REGIONAL files 9-6.

uti1i zati on report
INDEXED file 8-16.
REGIONAL file 9-8.

variable
allocat i on 15-10.
BASED 15-12.
ini ti alization 15-10.

VARIABLE record 6-4.

varying strings 14-2.

warning message 4-12.

WK 12-1.

work file 4-7.

work regions for files 14-15.

XREF option 4-12.

DE04"

z
0 z o
<
I—
o

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE SERIES 60 (LEVEL 66)/6000
PL/I USER'S GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken
y as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME ___________________________________ —----------

TITLE ___

C 0M P A N Y _ ___ __________ ________

A 0 0 R E SS __ _________ __

DATE

I
1

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

FO
LD

 A
LO

N
G

 LI
N

E
'-W

FO

LD
 A

LO
N

G
 LI

N
E

The Other Computer Company:

Honeywell

HONEYWELL INFORMATION SYSTEMS

14919
1.5276
Printed in U.S.A.

In the U.S.A.: 200 Smith Street, MS 061, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario DE04, Rev. 0

